Virtual Machine Warm-up Blows Hot and Cold

Edd Barrett

Software Development Team,
Department of Informatics, King’s
College London

http://eddbarrett.co.uk/

Vincent Knight

School of Mathematics, Cardiff
University

http://vknight.org/

1. Introduction

Many modern languages are implemented as Virtual Machines
(VMs) which use a Just-In-Time (JIT) compiler to translate ‘hot’
parts of a program into efficient machine code at run-time. Since
it takes time to determine which parts of the program are hot, and
then compile them, programs which are JIT compiled are said to be
subject to a warm-up phase. The traditional view of JIT compiled
VMs is that program execution is slow during the warm-up phase,
and fast afterwards, when peak performance is said to have been
reached (see Figure[I]for a simplified view of this). This traditional
view underlies most benchmarking of JIT compiled VMs, which
generally aim to measure peak performance. Typically, benchmarks
are run repeatedly in a single process, then data prior to peak
performance is discarded.
The aim of this paper is to test the following hypothesis:

H1 Small, deterministic programs exhibit traditional warm-up be-
haviour.

In order to test this hypothesis, we present a carefully designed
experiment where a number of simple benchmarks are run on a
variety of VMs for a large number of in-process iterations and
repeated using fresh process executions (i.e. each process execution
runs multiple in-process iterations). We deliberately treat VMs as
black boxes: we simply run benchmarks and record timing data.

While some benchmarks on some VMs run as per traditional
expectations, we found a number of surprising cases. At the most
extreme, some benchmarks never warm up, staying at their initial
performance levels indefinitely and some even slow down. Of the
eight VMs we looked at, each had at least one benchmark where
the VM did not follow the traditional model.

Our results clearly invalidate H1: the traditional view of warm-
up is not valid. We are not aware that anyone has systematically

[Copyright notice will appear here once *preprint’ option is removed.]

Carl Friedrich Bolz

Software Development Team,
Department of Informatics, King’s
College London

http://cfbolz.de/

Sarah Mount

Software Development Team,
Department of Informatics, King’s
College London

http://snim2.org/

Rebecca Killick

Department of Mathematics and
Statistics, University of Lancaster

http://www.lancs.ac.uk/"killick/

Laurence Tratt

Software Development Team,
Department of Informatics, King’s
College London

http://tratt.net/laurie/

c JIT compilation

5 < >

*§ Interpretation

sf

@

Q

)

£

= Warmup Peak performance

In-process iterations

Figure 1. The traditional notion of warm-up: a program starts
slowly executing in an interpreter; once hot parts of the program
are identified, they are translated by the JIT compiler to machine
code; at this point warm-up is said to have completed, and peak
performance reached.

examined this problem before, let alone take it into account when
benchmarking. This suggests that many published VM benchmarks
(including our own) may have presented results which are mislead-
ing in some situations.

We believe that accurate VM benchmarking is paramount, for
both VM authors, and for many end users. VM authors need to
know if optimisations have an effect distinguishable from noise
(and many optimisations have only a small effect). Similarly, end-
users with latency sensitive workloads (e.g. games or other soft
real-time systems) rely upon accurate benchmarking during their
evaluation phase. Our results suggest that current benchmarking
methods are potentially leading these parties astray.

This extended abstract is based upon a draft version of a full-
length paper. The draft is available at:

http://arxiv.org/abs/1602.00602/
2. Background

When a program begins running on a JIT compiled VM, it is typ-
ically (slowly) interpreted; once ‘hot’ (i.e. frequently executed)

2016/6/13

1>

http://arxiv.org/abs/1602.00602/

loops or methods are identified, they are compiled into machine
code; and subsequent executions of those loops or methods use
(fast) machine code rather than the (slow) interpreter. Once ma-
chine code generation has completed, the VM is traditionally said
to have finished warming up, and the program to be executing at
peak performance

Figure[I]illustrates a program subject to the conventional model
of warm-up. Exactly how long warm-up takes is highly dependent
on the program and the JIT compiler, but this basic assumption
about the performance model is shared by almost all benchmarks
of JIT compiling VMs (Kalibera and Jones|2013)).

Benchmarking of JIT compiled VMs typically focusses on peak
performance. In large part because the widespread assumption has
been that warm-up is both fast and inconsequential to users. With
that assumption in mind, the methods used are typically straight-
forward: benchmarks are run for a number of in-process iterations
within a single VM process execution. The first n in-process it-
erations are then discarded, on the basis that warm-up will have
completed at some point before n + 1. It is common for n to be
a hard-coded number, e.g. 5. The more sophisticated Kalibera &
Jones benchmarking method (Kalibera and Jones|2012} 2013)) (re-
cently used in (Barrett et al.[2015; Grimmer et al.||2015)) improves
upon this by having the user manually inspect run-sequence plots
(or trace plots) for each process execution. The method also sug-
gests a method for dealing with benchmarks which are cyclic in
nature (e.g. that produce a sawtooth wave when plotted).

While the Kalibera & Jones method is certainly an improve-
ment over straightforward benchmarking methods, our experience
has been that there remain cases where it is hard to produce satisfy-
ing benchmarking statistics. Crucially, the method does not provide
a firm way of determining when warm-up has completed. Because
of this “determining when a system has warmed up, or even pro-
viding a rigorous definition of the term, is an open research prob-
lem” (Seaton|2015)).

3. Method

To test Hypothesis H1, we designed an experiment which uses
a suite of micro-benchmarks: each is run with 2000 in-process
iterations and repeated using 10 process executions. So as to collect
high-quality data, we have carefully designed our experiment to be
repeatable and to control as many potentially confounding variables
as is practical.

The micro-benchmarks we use are as follows: binary trees,
spectralnorm, n-body, fasta, and fannkuch redux from the Com-
puter Language Benchmarks Game (CLBG); and Richards. Read-
ers can be forgiven for initial scepticism about this set of micro-
benchmarks. The choice was in fact deliberate. These small and
deterministic benchmarks are precisely the kind of program we
would expect to warmup in a well-behaved fashion. The fact that
the benchmarks are small should mean that the amount of code
which needs to be compiled at runtime should be small. Further
since the benchmarks are deterministic, there should be no con-
trol flow variation between in-process iterations of the benchmarks,
meaning that the JIT compiler is unlikely to be invoked during later
in-process iterations of benchmarking. Finally, since VM authors
use these benchmarks as optimisation targets, they should be some
of the most well-behaved benchmarks available.

'This traditional notion applies equally to VMs that perform immediate
compilation instead of using an interpreter, and to those VMs which have
more than one layer of JIT compilation (later JIT compilation is used for
‘very hot’ portions of a program, and tolerates slower compilation time for
better machine code generation).

We used C, Java, Javascript, Python, Lua, PHP, and Ruby ver-
sions of each benchmarkP] Since most of these benchmarks have
multiple implementations in any given language, we picked the
same versions used in (Bolz and Tratt/2015), which represented
the fastest performers at the point of that publication. We were
forced to skip some benchmark and VM pairings which either ran
prohibitively slowly (Fasta/JRubyTruffle and Richards/HHVM), or
caused the VM to crash (SpectralNorm/JRubyTruffle). The bench-
marks were audited for “CFG determinism”, meaning that no two
in-process iterations take different paths through the control flow
graph of the benchmark. We also checked that the different lan-
guage versions of the benchmarks all computed the same result. We
did not interfere with any VM’s Garbage Collection (GC) (e.g. we
did not force a collection after each iteration).

Our benchmarking hardware consisted of three machines:

Linux1/i7-4709K Quad-core i7-4790K 4GHz, 24GB of RAM,
running Debian 8.

Linux2/i7-4790 Quad-core i7-4790 3.6GHz, 32GB of RAM, run-
ning Debian 8.

OpenBSD/i7-4790 Identical hardware to Linux2/i7-4790, but
running OpenBSD 5.8.

We disabled any hardware features (where possible) that could
possibly induce variation into our results. For example turbo boost
and hyper-threading were disabled. The two Linux machines have
exactly the same packages and package versions installed.

The benchmarks were then run on the following VMs: GCC
4.9.3; Graal 0.13; HHVM 3.12.0; a recent GIT version of JRuby/Truf-
ﬂ HotSpot 8u72b15; LualIT 2.0.4; PyPy 4.0.1; and V8 4.9.385.21.
Although not a VM, GCC serves as a baseline to compare the VMs
against. HHVM and JRuby/Truffle do not yet run on OpenBSD,
and were thus skipped on the OpenBSD benchmarking machine.
We use a script to download, configure, and build the above ver-
sions of the VMs, ensuring we can easily repeat builds. All VMs
were compiled with a manually built GCC/G++ 4.9.3 (the same
used for C benchmarks), thus eliminating the GCC versions them-
selves as a source of variation.

The benchmarks were run under a specially developed tool
called Krurﬂ which measures in-process iteration times (using a
monotonic clock) in a fashion which minimises the effect of ex-
ternal sources of variation. For example, Krun: reboots the system
prior to the first process execution and after each process execu-
tion; ensures that each process execution starts with the same sys-
tem temperatures (£3°C); runs benchmarks as an otherwise unused
user account; and (on Linux, where this is possible) runs the kernel
with adaptive-tick mode CPU cores (tic[2016).

4. Preliminary Results

Our experiment runs 450 unique process executions, giving a total
of 900 000 in-process iteration readings. For each process execution
we generate a run-sequence graph, with the in-process iteration
number on the x axis, and the time (in seconds) on the y axis. A
full set of graphs, as well as our raw data, can be downloaded from:

https://archive.org/download/softdev_warmup_experiment_
artefacts/v0.2/

2 Our need to have implementations in a wide variety of languages restricted
the micro-benchmarks we could use.

3 GIT hash: £82ac77137da265d2447d723ce5973a04459a609
4lgithub.com/softdevteam/krun

2016/6/13

https://archive.org/download/softdev_warmup_experiment_artefacts/v0.2/
https://archive.org/download/softdev_warmup_experiment_artefacts/v0.2/
github.com/softdevteam/krun

0.8837 Richards, Graal, Linux1/i7-4790K, Process execution #3 11757 Fasta, V8, Linux2/i7-4790, Process execution #1
0.8837
0.5578

0.7751 S—— 1.1692
0 1 2 3 456 7 8

0.6664 1.1627
) 0)

[} [}

£ 0.5578 £ 1.1562
= (=

0.4492 1.1497
0.3405 1.1433
0.2319 1.1368

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
In-process iteration In-process iteration

Figure 2. Process executions warming up under the classical model.

3.6807 Fasta, PyPy, Linux2/i7-4790, Process execution #3 3.6807 Fasta, PyPy, Linux2/i7-4790, Process execution #4

3.6681

3.6554

) D
(] [
£ 36428 £
[=

3.6302

3.6176

3.6050 3.6050

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
In-process iteration In-process iteration
Figure 3. Inconsistent process executions on the same machine.

0.3474 Fannkuch Redux, Hotspot, Linux1/i7-4790K, Process execution #1 0.5672 Fannkuch Redux, LuaJIT, OpenBSD/i7-4790, Process execution #10
0.5672
o.senw

0.3396 0.5664 O5EYE

0 20 40 60 80 1

0.3319 0.5655

))
[} [}
£ 0.3241 £ 0.5647
[[

0.3163 0.5639

0.3086 0.5631

0.3008 0.5623

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
In-process iteration In-process iteration
Figure 4. A process execution with cycles. Figure 5. A process execution with slowdown.

3 2016/6/13

Fasta, LuaJIT, OpenBSD/i7-4790, Process execution #5

0.3551

Time(s)

200 400 600 800 1000 1200 1400 1600 1800 2000

In-process iteration

Figure 6. A process execution with changing phases.

Although some of the graphs do show classical warm-up be-
haviour (e.g. Figure [2), others highlight a number of interesting
(and unexpected) behaviours:

Inconsistent process executions Process executions for the same
benchmark / VM pair behave differently. Sometimes this occurs
on in-process executions on the same machine; sometimes only
across machines. E.g. Figure[3]

Cycles In-process iteration times repeat in a predictable pattern.
E.g. Figure[d]

Slowdown Performance of in-process iterations drops over time.
E.g. Figure[5]

Changing phases The mean of in-process iteration times abruptly
changes over time. E.g. Figure[f]

The preliminary results are troubling. Process executions which
do not warm up under the classical model cannot have traditional
benchmarking methods applied. In other words, if the end of the
warm-up phase cannot be identified, then in turn the peak perfor-
mance phase cannot be identified. This suggests that benchmarking
methods need to be rethought.

5. Related work

There are two pieces of prior art we are aware of which explic-
itly note unusual warm-up patterns. Gil et al.’s main focus is on
non-determinism of process executions on HotSpot, and the diffi-
culties this raises in terms of providing reliable benchmarking num-
bers (Gil et al.|2011). The authors report process executions which
we would classify as a slowdowns. Kalibera & Jones note the ex-
istence of what we have called cyclic behaviour (in the context of
benchmarking, they then require the user to manually pick one part
of the cycle for measurement (Kalibera and Jones|2013)).

6. Conclusions and Future Work

Warm-up has always been an informally defined term (Seaton
2015). Our preliminary work has shown cases where generally
accepted definitions fail to hold. To the best of our knowledge,
we are the first to (informally) classify different ‘warm-up’ styles
and note the relatively high frequency of non-traditional classifica-
tions such as slowdown and phase changes. However, we have not
yet found an acceptable alternative definition of warm-up. Based
on our experiences thus far, we think it unlikely that the different

styles of warm-up we have seen can be captured in a single metric.
We suspect it is more likely that a number of different metrics will
be needed to describe and compare warm-up styles.

There are several items of potential future work which would
likely lead to a better understanding of the warm-up behaviours:
automated classification of warm-up behaviours would help guide
us through the vast amount of data we have collected; VM instru-
mentation may help us to associate VM events, such as compilation
and garbage collection, to artefacts in our graphs. Similarly we may
find that hardware performance counters could offer insight: per-
haps hardware events such as context switches and CPU migrations
are a source of some of our findings. Finally, we collect more data
by adding further hardware platforms, operating systems, bench-
marks and VMs into the experiment.

Acknowledgements: This research was funded by the EPSRC
Cooler (EP/K01790X/1) grant and Lecture (EP/L02344X/1) fel-
lowship.

References

NO_HZ: Reducing scheduling-clock ticks, Linux kernel documenta-
tion. https://www.kernel.org/doc/Documentation/timers/
NO.HZ.txt, 2016. Accessed: 2016-01-21.

Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. Approaches to
interpreter composition. Computer Languages, Systems and Structures,
abs/1409.0757, March 2015.

Carl Friedrich Bolz and Laurence Tratt. The impact of meta-tracing on VM
design and implementation. Science of Computer Programming, 98, Part
3:408-421, Feb 2015.

Joseph Yossi Gil, Keren Lenz, and Yuval Shimron. A microbenchmark case
study and lessons learned. In VMIL, Oct 2011.

Matthias Grimmer, Chris Seaton, Thomas Wiirthinger, and Hanspeter
Mossenbock. Dynamically composing languages in a modular way:
Supporting C extensions for dynamic languages. In MODULARITY, Mar
2015.

Tomas Kalibera and Richard Jones. Quantifying performance changes with
effect size confidence intervals. Technical Report 4-12, University of
Kent, Jun 2012.

Tomas Kalibera and Richard Jones. Rigorous benchmarking in reasonable
time. In ISMM, pages 6374, Jun 2013.

Chris Seaton. Specialising Dynamic Techniques for Implementing the Ruby
Programming Language. PhD thesis, University of Manchester, Jun
2015.

5 We have already started instrumenting the VMs and we are also in the pro-
cess of designing automated analyses for classifying warmup behaviours.

2016/6/13

https://www.kernel.org/doc/Documentation/timers/NO
https://www.kernel.org/doc/Documentation/timers/NO
HZ.txt

	Introduction
	Background
	Method
	Preliminary Results
	Related work
	Conclusions and Future Work

