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Abstract

In the past, implementing virtual machines has either been a custom process or an
endeavour into interfacing an existing virtual machine using (relatively) low level
programming languages like C. Recently there has been a boom in high level scripting
languages, which claim to make a programmer more productive, yet the field of
compiler design is still rooted firmly with low level languages. It remains to be seen
why language processors are not implemented in high level scripting languages.

The following report presents an investigation into designing and implementing com-
puter languages using a modern compiler construction tool-kit called the “Low Level
Virtual Machine” (LLVM), in combination with a modern scripting language. The
report covers in detail traditional approaches to compiler construction, parsing and
virtual machine theory. Comparisons are made between traditional approaches and
the modern approach offered by LLVM, via an experimental object oriented language
called 3c, developed using LLVM, the Aperiot parser, Python and an incremental de-
velopment methodology.
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Introduction

The Low Level Virtual Machine is a modern compiler construction kit aiming to make building pro-
gramming languages easier [LLV, 2009a]. The aim of the this report is to explore the possibilities
offered by LIVM through the implementation of a programming language called 3c. The devel-
opment of 3¢ was experimental and heavily research driven. For this reason there were initially
very few requirements set in stone in order to allow the project to adopt features based upon what
LIVM can facilitate. Some very basic requirements were drafted:

e 3c must be free and open.
The project must be written using open-source technology and released under a liberal li-
cense. This allows others to take the project source code and learn from it and adapt it.

e 3c must be simple for any programmer to use.
The syntax of 3c must be conventional and understandable to other programmers of, for
example: C, C++, Java and Python.

e 3c must be portable.
3c must be portable across different operating platforms and computer architectures.

e 3c must implement common basic language features.
3c needs to support at-least conditionals, loops, variables, functions and an integer repre-
sentation.

Further requirements were adopted as the LIVM compiler infrastructure was explored and new
possibilities became known. The author was particularly interested as to whether an object hier-
archy could be implemented and if advanced OO concepts like polymorphism were feasible.

3c-compiler-Edd-Barrett.tex 1 Rev: 272, May 21, 2009
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Background Study

Before any design or implementation took place, some research was performed. In this section, the
field of compilers and virtual machines is studied, followed by a study into the Low Level Virtual
Machine and it’s key concepts.

2.1 What is a Compiler?

A compiler is one of the software systems falling under the category of language processors [Aho
et al., 2007]. Broadly speaking, a compiler is a program which transforms one language into
another. Typically, the input language is program source code and the output language is machine
code, later to be executed by the host operating system, but other types of compiler exist:

e The Java compiler, outputs byte-code, which will be interpreted by the Java Virtual Machine
(JVM) at a later date.

e The ITEX compiler, outputs DVI (DeVice Independent) documents from IXTX source code.

e The yacc “compiler compiler™?, takes in a grammar specification and outputs C source code.
Yacc is investigated in further depth in section 2.4.

When examined closely, a compiler is constructed of several sub-systems, which will be studied in
further detail in section 2.2.

2.2 Compiler Sub-systems

As previously mentioned, there are several sub-systems of compilation. Typically these are a to-
keniser, parser, semantic analyser and code synthesiser. Some compilers include various optimiser
sub-systems, but such components are entirely optional.

The tokeniser. Scans the input, collecting groups of characters (tokens) which have semantic
meaning.

The parser. Analyses the tokens and generates a syntax tree representation of the input.

The semantic analyser. Checks the tree makes sense semantically using static code analysis tech-
niques.

The code synthesiser. Generates the output.

INo typographic error. It actually stands for Yet Another Compiler Compiler.
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2.2.1 Tokenisation

During the tokenisation (or lexical analysis) stage, input is scanned and groups of characters with
semantic meaning are identified as tokens which will be used by the parser for syntax analysis
purposes. Take for example a language where a variable declaration is written as shown in figure
2.1. Non literal elements are marked in italic. Figure 2.2 shows how the input let a = 1 might
be tokenised for such a construct?. The resulting tokens are supplied to the semantic analysis
sub-system.

let warname = number

Figure 2.1: An examplary variable assignment construct.

let a = 1

! ! 1 1

<id : "let"> <id : "a"> <=> <number : "1">

Figure 2.2: A tokenisation example.

2.2.2 Syntax Analysis

Following tokenisation, the parser will proceed to analyse the sequence of tokens, for which a
grammar specification is required. To introduce the concept of parser grammars, this paper uses
a commonly used notation, Backus Naur Form (BNF) [Aho et al., 2007]. Figure 2.3 shows an
example of a simple context-free grammar expressed in BNF. A context-free grammar is one where
rules have only one item on their left hand sides, the opposite of which being a context-sensitive
grammar [Grune and Jacobs, 2008].

EXPR — EXPR OPER number
|  number

OPER — +
| -
| *

|/
Figure 2.3: A simple BNF grammar specification.

Context-free BNF grammar specifications have a production rule name on the left hand side and
at-least one list of tokens on the right. The lists define sequences of tokens which constitute a
valid instance of that production rule. Once a grammar is defined, a set of input tokens can be
applied and the result will be either a parse tree or a syntax error (in the case that the input tokens
could not be applied to the grammar). A parser starts at the initial rule of the grammar. What
happens next largely depends upon which parsing algorithm is used. A commonly used algorithm
in computer languages is the LR algorithm?, whereby tokens are read from Left to right, using the
Right-most derivation (bottom-up). This continues until either an error is encountered and parsing

2Token types vary between parser implementations.
30ther algorithms such as LL(k) and LALR also exist. Parsing is a vast topic and an in depth study is out of the scope of

this paper. For further reading on parser algorithms see Aho et al. [2007] and Grune and Jacobs [2008].
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is aborted or until the sequence of tokens is exhausted, in which case parsing was successful and
a parse tree can been visualised. As a means of example the input 1 + 2 + 3 is applied to the
above example grammar (fig. 2.3), starting at EXPR. Figure 2.4 shows the resulting parse tree.
Some parsers will go as far to optimise the parse tree, by removing ineffectual and intermediate
modes, resulting in an abstract syntax tree (AST). Such optimisations have no bearing upon the
functionality of the resulting output and are performed purely to improve the performance of the
compiler [Discher and Richard J. LeBlanc, 1991]. In the remainder of this report the term syntax
tree will be used to refer to either a parse tree or an abstract syntax tree, as they are handled
identically in stages following syntax analysis.

EXPR

EXPR OPER number

I :

EXPR  OPER number
\ \ \

number + 2

|
1

Figure 2.4: A parse tree derived by applying 1 + 2 - 3, to the grammar defined in figure 2.3.

One can clearly see the input tokens reading horizontally from left to right on the leaf nodes of
the tree. These tokens are said to be terminal, where-as all others are said to be non-terminal.
One can follow the nodes up from the leaves and see how the terminal tokens were derived by the
production rules of the grammar, until ultimately arriving at the initial rule.

2.2.3 Semantic Analysis Stage

Once the compiler has obtained a syntax tree for the given input, it is able to do some semantic
analysis. At this stage the compiler will do some checks on the validity of the input which can
not be realised from grammar analysis alone. A good example is type checking in statically typed
languages such as C, where the compiler will check the types of certain constructs, checking they
make sense semantically. If an array index were to be specified as a float in the C programming
language, the compiler should (and does) abort, informing the user of a semantic error [Aho et al.,
2007]. Platform independent optimisations may occur at this stage, depending upon the compiler
implementation.

2.2.4 The Synthesis Stage

The final stage of any compilation process is the code synthesis stage (often shortened to just code-
gen). This is where the syntax tree is converted into whichever output format the compiler is
designed to fabricate. Also optionally, output target specific optimisations may take place at this
time. Traditionally, executable code would be written to a file on disk, but as discussed before,
the output may be of any format. The output may even be in the same format as the input, just
transformed in some manner.

Rev: 272, May 21, 2009 4 3c-compiler-Edd-Barrett.tex
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2.3 Type Systems

All computer languages need a method by which to infer typing information. The sub-system
responsible for this task is the type system, of which there are 2 mainstream kinds [Rushton and
College, 2004]:

Static Typing A statically typed system is one where all of the types in the language are explicitly
encoded into the source language.

Dynamic Typing A dynamically typed system infers types at run-time and embeds little typing
information within the source language.

Static typing allows a vast majority of type checking to occur at compile time because all types
are known from the source language. It is also possible to have a much faster run-time with static
typing because type checking occurs only once at compile-time, whereas in a dynamic system, the
types are checked as the program is executed. Static typing has been criticised with claims that it
restricts the expressiveness and flexibility of the language by imposing typing contracts. Examples
of statically typed systems are: C, C++ and Java.

The dynamic typing approach allows the programmer to be far more flexible in their programming
style, but there are some downsides. As discussed before, type checking is less efficient because
type checking happens upon each execution of the program, but also fewer errors will be detected
prior to runtime, meaning that testing will need to be more extensive. Certain object oriented
concepts such as member function overloading can be complicated to achieve with dynamic typing,
as such mechanisms traditionally rely heavily upon knowing argument types up-front. Examples
of dynamically typed systems are: Python, Ruby and Lua.

It seems typing systems are largely subject to personal taste. Rushton and College [2004] suggests
that no one type system is well applied to all problems and that a suitable typing method should
be derived from the nature of the problem domain.

2.4 Traditional Compiler Development

One popular approach to implementing a compiler is to use a lexical analyser and parser generator
tool-kit such as lex and yacc*. The programmer will then add their own code in order to synthesise
output based upon the output from the parser. Figure 2.5 shows the structure of such a system.

Many widely used general purpose computer languages have adopted this method in part or full®.
It is also worth noting that these tools are not solely used in the language development context,
as many projects are using tokeniser/parser generator tool-kits for other purposes. Examples of
applications using such tool-kits include:

e The Perl scripting language.
Uses BSD yacc for parsing grammar [Wall, 2009].

e The TCL scripting language.
Uses BSD yacc or GNU bison for parsing [TCL, 2009].

e The Solaris Operating Environment’s zonecfg command.
Uses implementations of lex and yacc to parse commands entered by the user to configure
zone virtualisation [ZON, 2009].

40r alternatives such as flex and bison.
5Some projects using yacc or bison use their own tokenisers.
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Parser

Tokeniser

Parser Grammar + Actions

Tokenisation Rules

Lex/ Flex

Parser C Code

Tokeniser C Code

Developers C code for synthesis

y
C Compiler

Compiler Executable

Figure 2.5: Diagram showing typical utilisation of lex and yacc in compiler development.

The Portable C Compiler (PCC).

Uses both BSD lex and yacc for it’s C preprocessor [Anders Magnusson, based upon works
of Stephen C. Johnson of Bell Labs, 2009].

The Ruby scripting language.

Uses GNU bison in combination with a custom tokeniser [RUB, 2009].

The PHP scripting language.

Uses GNU bison in combination with the Zend language scanner [PHP, 2009].

The Calm Window Manager (CWM).
Uses BSD yacc and a custom tokeniser to parse it’s configuration file [CWM, 2009]

Etc...

The output of both lex and yacc is C source code, which can be compiled into object files and
linked using a compile time linker. The programmer is free to link any object files in at this
stage, making adding parsers and tokenisers to C programs easy and flexible. All the programmer
need do in his application is call the functions the tokeniser and parser objects files define®. The
resulting executable is the compiler itself, which is ready to take source code input and (in a single
process) perform the compilation stages discussed in section 2.2. The reason for the popularity of
this approach is clear:

e The tool kit is proven in the wild in real and successful software projects.

e The tools are free and open-source [FLE, 2009][YAC, 2009][BIS, 2009]".

e The tools are multi-platform, as they are written in and generate portable C code.

e The tools are default on a wide number of systems and can are easily added if not [CYG,

2009].

6Usually yylex() and yyparse().
7Including the C compiler in some cases [GCC, 2009]

Rev: 272, May 21, 2009
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2.5 What is a Virtual Machine?

A Virtual Machine (VM) is a software layer that provides the user with a pretence of having a ma-
chine other than the actual hardware in use [Rowledge, 2001]. There are currently two different
interpretations of the term, the meanings of which, although similar, are not the same.

2.5.1 System Virtual Machines

A system virtual machine is one which emulates (in software) a real system, one which exists
as a piece of hardware. Such virtual machines emulate closely the CPU, registers and memory
of the real-life implementation as closely as possible. Such set-ups have been used for various
reasons. Currently it is believed that by using (system) virtual machines as a replacement for real
systems, companies may reduce the cost of running a data-centre and therefore the total cost of
ownership [BIG, 2007]. The reasoning behind this is that running fewer machines costs less in
power for cooling and for powering the otherwise physical machines themselves. The other main
uses for system virtual machines are:

¢ To run different operating systems, be that different versions of the same system, or entirely
different systems altogether.

e For privilege separation uses, for example where administrators require many users to have
administrator privileges on their own dedicated systems.

This paper is not concerned with system virtual machines and one should assume that the term
“virtual machine” refers to a process virtual machine from this point onward.

2.5.2 Process Virtual Machines

The second type of virtual machine and the one most relevant to this paper is the process virtual
machine. The process virtual machine provides an execution environment for computer program
code. Such systems use the concept of an intermediate representation byte-code (or bit-code),
which is executed within the sandbox of the machine.

A process virtual machine is usually implemented in one of two ways: stack-based or register-based,
stack-based being the most common. In a stack-based VM, an argument stack is present [Ierusal-
imschy, 2003]8. When an operation is executed, the number of required arguments is popped
from this stack and the result of the operation is pushed back on to the stack after it has been
computed. In a register-based machine however, there is no argument stack and data is stored in
named registers instead. It has long been debated as to which architecture is the best for a process
virtual machine. A register based approach can reduce significantly the number of instructions
needed, but argument look-up is thought to be less efficient, as the registers must be resolved,
leading to larger code. In a stack based system, many more instructions are required to push the
data on to the stack initially, but it is quicker to retrieve arguments later, as they will be a known
offset to a stack pointer [Shi et al., 2005].

There are several execution strategies for virtual machines, the simplest of which is interpretation,
which means the byte-code is executed statement-by-statement on the fly. Execution in such a
way tends to be slower, but uses considerably less memory resources [JAZ, 2009]. Another way to
execute code in a VM is with Just In Time compilation (or JIT compilation). JIT compilation aims
to improve the performance of execution by compiling blocks of the code path to native code as
they are encountered at run time. This approach can help improve overall performance of code,

8which should not be confused with a stack of frames.
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but often leads to slow start-up times whilst many code paths are encountered and compiled for
the first time. Such an approach also uses more memory than direct interpretation [JAZ, 2009].

2.6 The Low Level Virtual Machine

The Low Level Virtual Machine(LLVM) [LIV, 2009a] is a register-based compiler framework which
aims to provide a standardised tool-kit for mid-level and front-end language development. Like
many virtual machines it works with an intermediate representation language. Although this con-
cept is not new [Discher and Richard J. LeBlanc, 1991], LIVM aims to further extend and refine
the process. Figure 2.6° shows some of the ways a developer might choose to implement LIVM.
Some of the sub-systems in LIVM are synonymous to those of the “traditional compiler” described
in section 2.4, but fundamentally LLIVM is different. In-fact LLIVM differs from even the mainstream
definition of a virtual machine:

e Provides a standard API and compiler back-end for many different compilers.
e Is not just an execution environment, although a JIT engine is provided, should it be needed.

e Ships with tools to make platform specific assembler from on-disk byte-code, this can be
assembled and linked in order to make an executable binary!°.

e Has very strong type checking. Far stronger than C.

e Has a comprehensive optimiser framework for many specific platforms.
e Has a number of profiling utilities.

e Can be used solely as an interpreter, using byte-code from disk.

e Can be interfaced by a number of language bindings, allowing parsers and tokenisers to be
implemented in high level languages.

2.6.1 Introducing LLVM Assembler

As stated before, LIVM uses an intermediate representation format which the user can express
as LLVM assembler. This assembler code can then be assembled into bit-code, which is an in-
memory data structure representation. Once in memory the bit-code may be executed, dumped to
an IR assembler file or converted into CPU instructions as platform specific assembler code. It is
important that one makes a clear distinction between bit-code and byte-code, as although in general
the terms are interchangeable, in the context of LIVM they are not the same. Both formats are
derived from assembled LIVM assembler source code, but byte-code is strictly an on-disk format,
whereas bit-code is an in-memory data structure for internal use only.

Listing 2.1: “Hello World” in LIVM IR.

; ModuleID = ’mod’

define i32 @main() {

entry:
%0 = alloca [4 x i8] ; <[4 x i8]1*> [#uses=2]
store [4 x i8] c"%s\OA\OO", [4 x i8]* %0

9LIVM is aiming in the future to remove the dependency upon GCC to make native binaries.
10Ultimately LIVM will be able to emit executable binaries directly, but these features are still under heavy development.
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Source Code on Disk

<
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Byte-code Synthesis

LLVM Core

Native Assembler Synthesis
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IR Assembler on Disk

T

Byte-code on Disk

Native Assembler on Disk

Native Executable

Figure 2.6: A diagram showing various ways in which the user can interact with LIVM.

%1 = getelementptr [4 x i8] J0, i32 0, i32 0 ; <i8x*> [#
uses=1]
%2 = alloca [13 x i8] ; <[13 x i8]1*> [#uses=2]
store [13 x i8] c"Hello World!'\0O", [13 x i81x* %2
%3 = getelementptr [13 x i8] %2, i32 0, i32 0 ; <i8x> [#
uses=1]
%4 = call i32 (i8%, ...)* @printf (i8x* 1, i8x %3) ;
<i32> [#uses=0]
ret i32 0
}
declare 132 Q@printf (i8x, ...)

Listing 2.1 shows the compulsory “Hello World” program in LLVM assembler. At a glance it looks
similar to microprocessor assembler code, but there are some important differences which will be

highlighted in the following sections.

2.6.2 The Structure of an LLVM IR Program

The top level component of any LIVM assembler program is the module, which acts like a container
for one or more functions and perhaps some global variables. Unlike most assembler implemen-
tations, LLVM assembler supports the concept of functions. Each function has it’s own stack frame
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(and therefore it’s own variable scope). A function may take a number of arguments!! and may
return one value. Arguments and return values must be one of the so called first class types: inte-
ger, floating point number, pointer, vector, structure, array or label. [LIV, 2009b]. Each function
may have 0 or more blocks. A function with no block is an external function, for example a func-
tion in libc, like printf (3). A block is a container for assembler instructions. Each block must
be terminated by a return or a branch to another block. Branching may be selective, therefore
allowing looping and conditional constructs.

2.6.3 Tight Integration with the Operating System Libraries

LIVM has the ability to use the underlying operating environment’s system calls and native shared
object libraries, directly from within byte-code. A system call is a call to a C function of the
operating system which requests a kernel facility [Stevens, 1992]. By providing this interface,
LIVM has very tight integration with the file-system, network stack and memory management
features of the system. In-fact once one realises that LIVM can call the dlopen(3) system-call, a
whole new universe of possibilities opens. dlopen(3) is used to import shared libraries at run-
time, meaning that during JIT execution, the program could do some quite weird and wonderful
things, like drawing graphical user-interfaces, or interacting with relational databases databases.
With other languages, this typically requires extending the VM with a plug-in shared object written
in C [The Python Development Team, 2009] [Jung and Brown, 2007], but with LIVM any C
function may be called with no need to modify the VM or write plug-ins.

2.6.4 LLVM APIs

Although one could write LLVM assembler code by hand, it would be very cumbersome and er-
ror prone. Assembler code is easier to fabricate in an auto-generated fashion, by either an LIVM
language binding or by a third party compiler. The LIVM distribution provides a C++ API, which
is well documented on the LLVM web-page, however other third party bindings are being de-
veloped. The “Hello World” assembler code show in figure 2.1 was generated using the Python
bindings [R Mahadevan, 2009]. Listing 2.2 shows the Python source code that was used. Cur-
rently you may interface LIVM via C, C++, Ruby [LLV, 2009c], Python [R Mahadevan, 2009] and
Haskell [O’Sullivan, 2009].

Ulwhich may be of variable length (varags).
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Figure 2.7: Diagram showing the multiplicity of the elements of an LIVM module.
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Listing 2.2: The Python script used to generate “Hello World”.

—

#!/usr/bin/env python

2 # $Id: world.py 154 2009-04-26 13:31:43Z edd $
3

4 from 1llvm import *

5 from llvm.core import =x*

6 from llvm.ee import *

7

8 int_t = Type.int (32)

9 1i8_p = Type.pointer (Type.int (8))

10  zero = Constant.int(int_t, O0)

11

12 mod = Module.new(’mod’)

14 main_sig = Type.function(int_t, [])

15 main = mod.add_function(main_sig, "main")

17 | printf_sig = Type.function(int_t, [ i8_p 1, True)
18  printf = mod.add_function(printf_sig, "printf")

20 | block = main.append_basic_block("entry")
21 'b = Builder.new(block)

25 # make printf format string

26 | fmt_c = Constant.stringz ("%s\n")

27 | fmt_p = b.alloca(fmt_c.type)

28 | b.store(fmt_c, fmt_p)

29  fmt_i8_p = b.gep(fmt_p, [ zero, zero 1])

31 # make output string

32  str_c = Constant.stringz("Hello World!'")
33  str_p = b.alloca(str_c.type)

34 b.store(str_c, str_p)

35  str_i8_p = b.gep(str_p, [ zero, zero ])

37 ' b.call(printf, [ fmt_i8_p, str_i8_p 1)

38

39 b.ret(Constant.int (int_t, 0))
40

41 # /----- main

42

43 | print mod

3c-compiler-Edd-Barrett.tex 11 Rev: 272, May 21, 2009



46
47
48

Edward Barrett 3c - A JIT Compiler using LIVM

# jit
mp = ModuleProvider.new(mod)
ee = ExecutionEngine.new(mp)

retval = ee.run_function(main, [])

2.6.5 The LLVM Optimiser and Profiler

One feature of LLVM is that it is able to optimise at several stages of the compile/execute life-cycle:
compile-time, link-time and run-time [Lattner and Adve, 2004]. LLVM defines a set of optimiser
passes, which the user may turn on individually, according to their needs. A typical optimiser pass
will transform the bit-code representation of a program, arriving at a new, functionally identical
program, which when applied properly, can improve the performance or size of a program. Some
optimiser passes do not transform the program at-all. These passes are profiler passes. Instead of
altering the program, such passes only analyse it, allowing the developer to spot possible bottle-
necks and shortcomings in their programs. At the time of writing, there are 63 optimiser passes
defined in LIVM [Spencer, 2009].

2.7 Comparing LIVM to other Virtual Machines

As previously mentioned, the concept of the virtual machine is not new. Several other virtual machine
implementations were developed prior to the birth of LLVM. In this section two other VM implementa-
tions are investigated and contrasted to LLVM.

2.7.1 The Java Virtual Machine

The Java Virtual Machine (JVM) is a product of Sun Microsystems and is the stack-based JIT
engine underlying the Java programming language [Lindholm and Yellin, 1999]. The JVM is
designed to provide platform independence and validity of byte-code programs. The JVM’s byte-
code format is the class file format. A class file is a binary format which is ready for JIT execution
in the JVM. It is easy to make the assumption that a class file has a one to one relationship with a
Java class definition, however this is untrue. The byte-code format is completely disjointed from
the Java programming language, but does lend itself to object oriented representations [Lindholm
and Yellin, 1999].

Hotspot Technology

Traditional JIT compilers, do not build the entire byte-code into native instructions, but instead
compile the code-path directly ahead at runtime. This could happen on a per method basis for
example. The JVM builds further on this idea, by profiling code as it is running, then compiling
and transforming the code path based upon “hot spots”. Initially the JVM will act as an interpreter,
executing statements one by one and gathering profiling data. If a certain code path is executed
frequently enough to make compilation beneficial, the JVM will compile that section of the byte-
code to native instructions. Once a code-path has been compiled, strictly the JVM is no longer an
interpreter, but a hybrid interpreter/JIT engine.
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Validity Checking of Class Files

A popular use for Java on the internet is for applets and application servers [TOM, 2009]. A Java
applet allows the user to run a JVM instance inside a web browser to deliver dynamic content.
Byte-code originating from an unknown source in a networked environment has security and
validity implications. For this reason, the JVM does some checks on the byte-code it is presented
prior to it’s execution, which happens in several stages:

1. Byte-code structure checks.

2. Data flow independent checks.
3. Data flow analysis checks.

4. Symbol Checking.

Initially the candidate byte-code is checked for structural integrity. The JVM checks for “magic
bits” at the beginning of the file (0xCAFEBABE) and that the byte-code version is compatible with
the VM implementation'2. The file is checked for correct termination with no extra bytes at the
end etc. Next some checks on the basic semantics of the code, which do not require data flow
analysis are done. During this pass the JVM checks all symbols have been given valid names
and that final classes have not been super-classed for example. Following this data flow analysis
based checks are performed, for example “define/use pairs” (D/U pairs) are analysed to check no
variable is a accessed before it is defined. During this phase of verification, each instruction that is
checked has it’s changed bit set, in order that it not be checked twice. In the final stage reference
types are checked and various referenced class attributes and methods are checked for existence.

The validation process described above is one preventative measure against foreign, possibly ma-
licious byte-code. Another design feature which greatly improves the security of a class file is
it’s proactive memory management. In a non-memory-managed language such as C, the user
must have knowledge of pointer types and memory allocation routines, such as malloc(3). For
low level hardware programming this is ideal, as the programmer will want true flexibility with
how he/she deals with data structures in memory and on disk, possibly optimising routines with
pointer arithmetic. This makes it very easy to forge bad pointers, either accidentally or with
malicious intent.

Figure 2.8 shows a C program, which demonstrates a memory management mistake. The pro-
grammer has accidentally freed up the memory buffer storing the variable a, before a call to
printf (3), where the pointer (to the now free memory buffer) is dereferenced. As far as the
C compiler is concerned, this is valid, as the pointer to a remains on the stack after the call to
free(3). Only at run-time can the user potentially detect this error. Unfortunately in many en-
vironments this program will succeed, despite the programming error. Later on the operating
system may allocate the same memory a points to for a different type of data structure, causing
subsequent uses of a to demonstrate undefined behaviour. It was (and still is) programming er-
rors similar to this that malicious users exploited in order to execute arbitrary code with harmful
intent. The classic example would be using a stack overflow to over-write the return address of
a function, in order to execute malicious code. Although some tools can help identify memory
management errors [OBS, 2009][VAL, 2009] [Perens, 2009], the result largely depends upon the
host operating environment. Additionally not all developers will adopt such tools.

The JVM byte-code format pro-actively prevents memory management errors, by handing off
memory management to the JVM directly, leaving the programmer unconcerned with such tasks.
Because the class file format has no concept of pointers, it makes it more difficult to forge refer-
ences to unallocated memory [Gosling and McGilton, 1995]. This safety feature of the JVM comes
at the price of reduced flexibility.

12Not only are there multiple version numbers of Java, but also different implementations from different vendors.
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#include <stdio.h>

int

main(void)

{
int *a = (int *) malloc(sizeof (int));
*a = 666;
free(a);
printf("a is now %d4d", *a);
return O;
}

Figure 2.8: A contrived memory management programming fault in C.

2.7.2 The Lua Virtual Machine

The Lua scripting language is a small lightweight scripting language mostly used as a plug-in
language, providing applications with scripting support. Lua byte-code, as of version 5, executes
in a register based virtual machine and was one of the first of this kind to be adopted in the
mainstream [lerusalimschy et al.]. The Lua VM has has been designed from the ground up with
several specific goals in sight. Lua was meant to be small, fast, portable, embeddable and under a
license suitable for industry'®.

Lua 4 Versus Lua 5 - Stack based to Register Based

The Lua virtual machine used to be a stack based virtual machine, but as of release 5 is a register
based VM. The authors of Lua have justified this decision in depth [Ierusalimschy et al.], reasoning
that in a stack based VM, some operations require values on the stack to be moved and swapped,
which not only defeats the point of a stack, but is subject to an excessive instruction count and
requires repeated use of the expensive copy instruction. Secondly, although register machines do
have a larger instruction size, due to having to specify operands explicitly, Ierusalimschy et al.
argue that the overhead is exaggerated as register operands can be resolved using short and cheap
CPU instructions, where-as stack operands often require large instruction operands which can not
be despatched (portably) in one CPU cycle. The JVM’s branching implementation is given as an
example of such a case. Lastly it was thought that by using a larger number of registers (than
physical machines), many more local variables may be stored directly in registers (as opposed to
globals), making local variable access very fast [de Figueiredo et al., 2008]. These rather bold
claims were backed up with solid evidence that the register based Lua 5 out-performed Lua 4 in
lab tests by an average of 70% (fig. 2.9).

Listing 2.3: "Lua 4 (stack-based instructions)”

GETLOCAL 0 ;
GETLOCAL 1 ;

13Lua is distributed under the terms of the MIT open source license.
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ADD -
SETLOCAL 2 ;¢ =

Listing 2.4: "Lua 5 (register-based instructions)”

ADD 3 1 2; ¢c = a + b

2.7.3 Comparison to LLVM

Having studied the JVM alongside LIV, it is clear that the projects, although in the same software
category, have different goals. The JVM aims to hide the underlying machine and to allow safe
execution of a program via JIT compilation regardless of the underlying hardware platform. LLIVM
is more limited than the JVM in terms of dynamic execution, and can JIT compile code, but has
nothing as intricate as a hotspot compiler. Having said that the JVM does not ship with any tools to
help make executable binaries. LLVM on the other hand has a tool called lic, which converts byte-
code to platform specific assembler code.The hotspot compiler is a novel touch, but it is important
to remember that the constant profiling of the code-path will cost CPU cycles and memory capacity
itself. Further research in this area would be interesting.

LIVM has much of validity checking the JVM has, but it is only enabled optionally through an API
call (verify()). Additionally, memory management in LIVM is manual and exposes pointer types
to the language implementer. As with the C example just presented, this makes buffer over-runs
and other pointer based mis-adventures easy, but does provide the programmer with more low
level flexibility.

Lua shares it’s register-based design with LIVM, but again is a very different system. The authors
of Lua have managed to harness the benefits of a register-based machine in a portable nature,
however it is yet to be seen if other stack-based VM’s which aim to be less portable can out-
perform Lua. The Sun’s Hotspot Java VM implementation, for example is only targeted at x86/64
and SPARC based machines. It is likely that at the cost of portability, the Hotspot compiler can
generate some CPU specific instructions in order to improve the speed of execution. LIVM aims
to have the best of both worlds, by having knowledge of a diverse range of computer architec-
tures, optimising at the instruction level for a specific target, but whilst also remaining incredibly
portable across a variety of UNIX, Windows and other platforms. The obvious outcome of this is
that the development time (of LIVM) will be many more man hours, which seems to stand true,
as the code-gen and interpreter sub-systems of LIVM are mostly incomplete since the year 2000.
Another unfortunate side-effect to LIVM’s portable development strategy is that it has exposed

Program Lua4.0 Lua5.0 %
sum (2e7) 1.23 0.54 44
fibo (30) 0.95 0.69 73

ack (8) 1.00 0.88 88
random (1e6) 1.04 0.96 92

sieve (100) 0.93 0.57 61
heapsort (5e4) 1.08 0.70 65
matrix (50) 0.84 0.59 70
average 70

Figure 2.9: Lua speed improvements [Ierusalimschy et al.]
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some odd bugs in certain versions on C compilers (namely GCC) on certain platforms [The LLVM
Development Team, 2009], however this is expected and is not the fault of LLVM.

Really, the name “The Low Level Virtual Machine”, is a somewhat misleading name as it is much
more of a compiler construction kit than a VM. Other VM’s like Lua and Java are much more
conventional in the sense that they are only execution environments in a sandbox. LIVM does not
aim to be a sandbox and offers the implementer access to operating system calls directly. There is
a JIT engine available, but the implementer need not use it if he/she does not want or need to. It is
low level and flexible. It includes few high level compiler technologies, but provides the facilities
for a developer to implement them. Features such as garbage collection and run-time profiling
are achievable if required. In a nutshell, LIVM is a re-usable back-end, which is re-targetable and
optimised at multiple stages for a wide range of computer architectures, yet hiding the specifics
from the compiler implementer.
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Software Engineering Technique

Having researched compiler technology, planning of the 3c compiler started. A suitable development
strategy is an important consideration for software projects. In this section software engineering
techniques are explored and the proposed development strategy for the 3c compiler is presented.

3.1 Development Model

There are several well documented approaches that a software engineer may adopt for a project,
the most classic example of which being the waterfall methodology. In the waterfall methodol-
ogy distinct milestones for requirements engineering, design, implementation, testing and main-
tenance are identified. Development then moves from one milestone to the next sequentially.
Building upon this the V methodology works in much the same way, but goes further, identifying
deliverables and their dependencies with a strong emphasis on testing [Forsberg and Mooz, 1994].
Conservative methods like the waterfall and V methodologies allow little opportunity to re-work
the design at a later date, which is somewhat unrealistic in the world of software engineering. It-
erative approaches on the other hand, allow the key stages of software development to be tackled
in part in a number of small iterations, meaning that there is plenty of space for the project design
to be adapted mid-development.

1.Determine Objectives 2.ldentify and Resolve Risks

(7
NS

4. Plan the Next Iteration 3.Development and Testing

Progress

N

Figure 3.1: The spiral development model [Forsberg and Mooz, 1994]

The development model chosen for the 3c project was the spiral technique [Boehm, 1988] (fig.
3.1), mainly for it’s iterative qualities. The waterfall and V methods were disregarded due to their
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need for mostly concrete requirements and design prior to any implementation. It was thought (at
the time) that the author had too little understanding and insight of the capabilities of the tools
for full requirements and design to be developed prior to at least a partial implementation. It is
also worth noting that at the time of writing, little of the supporting technology 3c is based upon
was mature: llvm-py was not fully complete and largely undocumented in places, LIVM itself was
unfinished etc. By adopting an iterative methodology, design and specification changes could be
made dynamically to respond to tool-chain shortcomings or to the discovery of undocumented
new features. Another iterative methodology, extreme programming (XP) was also considered, but
it was decided 3¢ would not suite well. XP is largely based upon distinct roles within a mid-sized
development team, fed by feedback from an external end-user [Cockburn, 2007]. The develop-
ment of 3c is by a sole software engineer and is mostly driven by curiosity and by expectations of
a programming language in the author’s experience, deeming XP inappropriate.

3.2 Software Engineering Tools

Some tools (other than programming tools) will be used to help the software development life-
cycle, the keystone of which is subversion (sometimes called SVN) [SVN, 2009]. Subversion is a
source code management system which has been heavily adopted in the open-source community
due to its liberal license and in many cases has replaced the concurrent versions system entirely.
The function of subversion is to track changes to source code over time and provide information
about when and what changed as well as where in the source code and by whom. This involves a
SVN server, holding a code repository and allows developers to “check out” project code, edit the
code and then check the code back in. This allows developers to track development progress and
helps to locate the cause of any recently introduced software faults. Subversion also supports the
concept of code branches, which are commonly used to store different versions of a source tree.
One branch was used for every cycle of the spiral software development life-cycle. Additionally
a bug tracker which plugs-in to subversion [TRA, 2009] was used in order to keep a list of bugs.
Each bug was assigned (amongst other information) a severity, category and detailed description.

It is important to plan for disaster in any software development exercise. To ensure the success
of the development of 3¢, some measures were taken to avoid data loss. This was implemented
in the form of 3 backup strategies. The first was inherent in the design of subversion; the code
checked out by clients is effectively a backup. The second was a copy of the entire subversion
repository data to another machine located in the same building as where primary development
of 3c occurred. This was achieved with a piece of software called rsync [Tridgell and Mackerras,
20091, which efficiently makes a copy of data over a network, by only sending parts of the backup
which have changed. This backup alone was not deemed enough because a fire or flood could
still cause permanent data loss (if all aforementioned backups are in the same geographical area).
To eliminate this single point of failure, a third automated backup was scheduled to compress
and upload (via the secure shell [SSH, 2009] utility scp) the subversion repository to an off-site
location each day.
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3c Design and Implementation

Having identified the initial direction of the project, 3c was designed and implemented using an
iterative approach. This section describes the resulting final design of 3c. Any drastic divergences or
compromises made relating to the design (at any iteration) are explained and are noted in the margin
for emphasis.

4.1 System Overview

The 3c programming language is a pure object oriented, dynamically typed language which uses
LIVM (version 2.4) for mid-level and back-end JIT functionality. The compiler front-end is written
in the Python scripting language (version 2.6.1) and utilises the Python bindings for LLVM (version
0.5). A scripting language was chosen for the front-end due to time constraints, as implementing
the same compiler in C or C++ would take significantly longer. The Python scripting language
was specifically chosen because at the time of writing it had the most mature LLVM bindings (of
the scripting languages) [R Mahadevan, 2009]. Instead of writing a custom tokeniser and parser,
an existing open-source project was used, called Aperiot [Posse, 2009]. Figures 4.1 and 4.2 show
the 3c sub-systems and class layout at a glance.

File-system Python LLVM

3c Source Code Aperiot Syntax Tree 3c Mid-Layer LLVM Bit-code —P@

Figure 4.1: Diagram showing the sub-systems of 3c.

4.2 3c Source Code Design

3c source code is the input format of the 3c compiler. 3c source files are simple ASCII text files
formatted to the rules of the 3c language grammar. It is conventional to name 3c source files with
a . 3c suffix, however it is not required. Section B.3 shows an overview of the 3c syntax. Each line
may contain at most 1 statement terminated by a UNIX line feed. Lines whose first non-white-
space character is a # are ignored (as comments). Indentation may be used, but is purely cosmetic,
as all leading white-space is stripped prior to tokenisation.
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3c Mid-Layer )

Aperiot parser

OptConf ccc Compiler

[T CompilerException

optimiser

configuration

CLI User Interface Iﬁ
semantic analysis /

LLVM calls

Figure 4.2: Finalised 3c mid-layer class diagram (Methods not shown for brevity).

4.3 Aperiot as a Tokeniser and Parser

In order to accelerate development a third party component was used for the purpose of tokenising
and parsing. The Aperiot [Posse, 2009] parser can perform both of these tasks using a simple BNF-
like syntax and the resulting output is imported natively into the user’s Python code. Aperiot
uses the LL(1) parsing algorithm, which is a top-down parsing method which uses the left-most
derivation. One token of lookahead is used and no back-tracking is permitted (traditionally).
Unfortunately the LL(1) parsing algorithm, can only parse a subset of context-free grammars.
This limitation did impact the development of 3¢ and explains the “wordyness” of the 3¢ syntax.
The Aperiot input for the 3c language is shown in listing 4.1.

Listing 4.1: Aperiot grammar for 3c

# 3c grammar

# $Id: ccc_parser.apr 210 2009-05-09 17:41:31Z edd $

#Copyright (c) 2008-2009, Edd Barrett <eddbarrett@googlemail.com>

#

#Permission to use, copy, modify, and/or distribute this software for any
#purpose with or without fee is hereby granted, provided that the above
#copyright notice and this permission notice appear in all copies.

#

#THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#0R IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
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import
glue

llvm.core

identifiers
varname
funcname
argname

classname

numbers

number

operators
plus "+"
times "x"
minus "-"
div VA

asn n=n

mbracc "->"

cond_eq "=="
cond_neq "!="
cond_1t mgn
cond_gt ">"
cond_lte "<="

cond_gte ">="

brackets
lpar n(u

rpar n)u

keywords
print
let
func
func_done
ret
call
pass
new
if
else

if_done

polyop +
polyop *
polyop -
polyop /
polyop =

# H H H

**

equality test

member accessor

not equality test
less than test

greater than test

# H H H H

"print"

n let n
"func"
"func_done"
Ilret n
"call"
Ilpass n
Ilnewll

n if n

"else"

"if_done"

less than or equal test

greater than or equal test
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while "while"

while_done "while_done"

strings

string

start
INIT

rules

# start here

INIT -> pass : "" # nothing
| print EXPR : "comp.hook_print($2)"
| let ASSIGNABLE asn EXPR : "comp.hook_var_assign($2, $4)"
| func funcname lpar FUNCARGLIST rpar : "comp.hook_func_def ($2)"
| ret EXPR : "comp.hook_ret ($2)"
| func_done : "comp.hook_end_func ()"
| if EXPR COND_OP EXPR : "comp.hook_cond($2, $3, $4)"
| else : "comp.hook_else()"
| if_done : "comp.hook_end_cond ()"
| while EXPR COND_OP EXPR : "comp.hook_while($2, $3, $4)"
| while_done : "comp.hook_end_while()"
| EXPR :o"gL

# expressions

# {
EXPR -> TERM plus EXPR : "comp.hook_polyop($2, $1, $3)"
| TERM minus EXPR : "comp.hook_polyop($2, $1, $3)"
| new classname lpar CALLARGLIST rpar : "comp.hook_class_inst($2)"
| TERM s
TERM -> FACT o "gL
| FACT times TERM : "comp.hook_polyop($2, $1, $3)"
| FACT div TERM : "comp.hook_polyop($2, $1, $3)"
| CALL s
FACT -> plus FACT g2
| minus FACT : "comp.hook_negate ($2)"
| lpar EXPR rpar g2
| PRIM :ongLy
#3
CALL -> call funcname lpar CALLARGLIST rpar : "comp.hook_func_call($2)"
| call varname mbracc funcname lpar CALLARGLIST rpar : "comp.
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hook_member_call($4, $2)"

111  # argument lists
112 ' # annoyingly cant have expressions in call statements

113  # due to LL(1). conflicts with FUNCARGLIST

114  CALLARGLIST -> PRIM CALLARGLIST : "comp.hook_arg_push($1)"
115 | empty : nn
116

117 # def needs its own rule that only takes argument name tokens
118  # for example "func my_func(1)" is invalid

119  FUNCARGLIST -> argname FUNCARGLIST : "comp.hook_arg_push($1)"
120 | empty . omw

122 ' # primitive tokens

123  PRIM -> number : "comp.hook_int ($1)"

124 | varname : "comp.hook_var_get ($1)"

125 | string : "comp.hook_string($1)"

126

127 | # 1lhs of a ’let X = Y’

128 ASSIGNABLE -> varname : "comp.hook_assignable($1)"
129 | # | member varname : "comp.hook_member_get ($2)"
130

131 # conditional operator for if statements

132 COND_OP -> cond_eq N
133 | cond_neq "L
134 | cond_1t o"eL
135 | cond_gt "L
136 | cond_1lte s "1
137 | cond_gte gL

4.3.1 LL(1) Limitations

One limitation of the LL(1) parsing algorithm is that it can not deal with left-recursion [Aho et al.,
2007]. This posed little problem, as one can re-factor the grammar in such a way so as to eliminate
the left-recursion, as shown in figure 4.3a.

A — A+ A - A — B ’+ A
|  number re-factor B — number
(a) Left Recursion (b) Resolved

Figure 4.3: Re-factoring a left recursion grammar into one LL(1) can parse.

However, consider the grammar in figure 4.4a. An LL(1) parser can not parse this because it only
looks at the first token, when deciding which rule to apply [Posse, 20071, hence the name LL(1);
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The 1 is referred to as the look-ahead (the k) of the class of LL(k) parsers® . A technique called
left factoring may be used to transform the grammar into a functionally identical grammar, which
may be parsed by LL(1). Sometimes left-factoring will need be to applied several times before a
grammar becomes LL(1) compatible.

A — xy -
| xz left-factor

(a) Ambiguous
(b) Resolved

Figure 4.4: A grammar a conventional LL(1) parser can not parse, resolved with left-factoring.

Another way in which grammars can be transformed so as to conform to the limitations of LL(1),
is by the process of in-lining. Using this technique, rules with only one candidate (unit rules), are
made redundant, by using the single candidate directly. Figure 4.5a shows a new grammar which
again, the LL(1) can not parse. By in-lining rules B and C, then left-factoring once, the grammar
is transformed into a grammar LL(1) is happy to parse.

A — Bm
A — Dm
| Cn — A — xm -
) ] | Dn
B N x n-line | xn Zeft—factor

D — x
C — x

(c) Resolved
(a) Ambiguous

Figure 4.5: Using in-lining to resolve LL(1) conflicts.

Usually the grammar author is expected to manually make these adjustments. Aperiot does the
transformations automatically in memory at run-time. As stated previously there is a fundamental
issue with the LL(1) algorithm, which stems from grammars which simply can not be made non-
ambiguous, even when using left-factoring and in-lining. Figure 4.6a shows such a grammar and
an attempt to re-factor it, before reaching a final ambiguous grammar (x is ambiguous). LL(1)
parsers can not parse ambiguous grammar [Aho et al., 2007].

A — Bm

A — xm

| Cn A — xm

— ‘ Cn —
— X ) ) | =xn
in—-line ¢ — x or even

— X | yn

|y
| y (c) Still stuck

(b) Stuck

(a) Ambiguous

Figure 4.6: A grammar which can not be re-factored to adhere to LL(1).

ILL(k), with a k >= 2 would have no problem parsing this example grammar, as it would look at more than just the
first token when making it’s decision.
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LL(1) Limitation Workaround

Having identified this as a problem with the initial grammar design for 3c, a simple but effective
solution was devised. By inserting a unique string literal as the first token in composite rules,
one can guarantee the grammar to be LL(1) compatible. So a variable declaration such as a = 1,
became let a = 1, so that it would not conflict with the singleton statement a (which is a valid
3c expression).

4.4 The 3c Mid-Layer

The 3c mid-layer is the sub-system between the parser and the LIVM Python bindings, which does
semantic analysis, state tracking and triggers bit-code synthesis for 3c. Like many parsers, Aperiot
allows the implementer to associate grammar constructs with parser actions. A parser action is
basically a small block of code, which is executed as the syntax tree is traversed after parsing is
complete. The 3c compiler grammar uses this mechanism to assign calls to the methods of the
mid-layer. Such methods in the context of 3¢ were named parser hooks. A parser hook deals
specifically with one language construct and has a method name prefixed hook_, for example
hook member_call() deals with 3¢ member function calls.

A simple example is beneficial at this stage of discussion. Consider the simple example shown
in figure 4.7. This figure shows the parse tree for the program let a = 1 and the sequence of
method calls upon the compiler mid-layer.

1. hook_int: 1

— 2. hook_assignable: a
(a) Parse Tree 3. hook var_assign: a, 1

(b) Mid-layer Calls
Figure 4.7: A sequence of parser hook calls.

Each call to a parser hook may alter the state of the compiler, which may alter the behaviour of
the compiler at a later date. The 3¢ compiler holds more state information than other compilers
due to the decision to make the 3c parser a per-line based parser. This decision was made because
an attempt to make an interactive shell like that of Python and Ruby was planned, not completed.
Unfortunately this overcomplicated certain aspects of the compiler, particularly in dealing with
conditionals and loops (more information in section 4.6.4). At the time of writing 3c holds the
following state information:
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A list of stack frames For each function call, a new stack frame is opened which will hold infor-
mation such as the function name, a pointer to the function, argument names, local variable
names and pointers to what is held in the variables. When a function return node is met, the
stack frame is removed. Stack frames are essential to proper variable scoping. Without such
mechanisms all variables will be global, making proper recursion very difficult or impossible.

An argument stack. Upon reaching argument nodes for a function argument list, the objects
referenced are cached in the argument stack for use later. The reason for this is that the
length of an argument list is never know prior to compilation, meaning one parser hook
would be needed for each length of argument list. Needless to say this is both impractical
and illogical. So instead when function call node is reached, the correct objects are be
retrieved from the argument stack prior to synthesising the function call instructions. The
argument stack is also used when synthesising function definition code, so as to copy the
arguments onto the stack of the local function with the correct symbol table name.

A conditional/loop stack. Due to limitations in the line-by-line parsing approach of 3c, a stack
of conditional and loop statements is maintained (the C/L stack). Each record in the stack
contains pointers to each block within. For example a loop construct has a condition check,
loop body and loop exit block. Each of these blocks will be needed later, for example when
the end of a loop is reached and the compiler must direct program execution back to the
loop check block to see if the loop runs again.

A type-sym table. A list of class definitions is held with information relating to the class attributes
and methods, but most importantly a type-sym. A type-sym is a unique identifier integer for
every type in 3c. Currently parser hooks do not manipulate this table, as user defined classes
are not yet implemented.

3c does not alter the parse tree, before traversing it and applying actions, therefore no AST is
involved in the compilation process. This was mainly due to time constraints. 3c does however
perform limited semantic analysis and error trapping. 3c will abort compilation if the user at-
tempts to instantiate a non-existent class or if an undefined variable is referenced. There are some
other semantic-based error traps, which are implemented at run-time instead of at the mid-layer,
due to various complications (See section 4.9.1).

4.5 3c Object Hierarchy

3c is a pure object oriented language, meaning that the user is only ever concerned with objects
and there is no such thing as a “primitive type”. There are 3 built-in classes: Object, Integer
and String. The base class for the entire system is the Object class, which is the most generic
type, holding only one field donating the object’s type. Figure 4.8 shows the class hierarchy in
3c. One might ask why a type is held, given that the object is of type Object. This is because it
is necessary to define a “lowest common denominator” interface to function calls within the 3c
byte-code. This is achieved by casting higher level types down to generic Object when calling
methods and functions. This is required if inheritance is to work properly.

Consider for example, an imaginary class A, which is sub-classed by another imaginary class B. Now
A defines a method, which is to be inherited by B. The first argument of any method internally is
a pointer to the object which is being operated on. In 3c this detail is hidden from the user, but
in some languages such as Python, it is not?. Although 3c appears to be dynamically typed, LIVM
assembler is not. This means that if B is to inherit this method, A must internally provide a version
of the method which accepts the type of B as the pointer type to it’s self. Such a solution is not a
good one, as this would mean A would need to have prior knowledge of every class which might

2def my_method (self, argl, ...)
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sub-class it. Instead, all arguments are casted down down to Object and within the function
casted back up to either a known type, or the type indicated by the type field of the Object class.

Object
- type: <i32 *>

+ getType() : Integer

Integer String
- value: <i32 *> - type: <i32 *>
- type: <i32 *> - value : <i8 *>

+ construct(in value : Integer) : Integer - length : <i32 *>
+ inspect() : Integer + construct(in value : string) : string

+ inspect() : String

Figure 4.8: 3c Class hierarchy (internal methods are hidden).

All references to object instantiations are stored internally as “double pointered” LIVM structure
types®. There is a reason for using two pointers, which is discussed in section 4.6.4. Each field
within an instantiation is a pointer to some data. In the case of Object, (as mentioned previously)
there is just a pointer to an integer indicating the type of the object. Figure 4.9 shows this structure
visually.

Static Pointer Dynamic Pointer Struct Object
<{i32* } * *> <{i32*} *> <{i32*}>

type <i32>

Figure 4.9: An Object instantiation

4.6 Basic Functionality

In this section each language construct is studied in detail, identifying how each works internally, how
they alter the compiler state and any potential problems which were encountered during development.

4.6.1 Constructing Built-in Types

The user may instantiate the built-in classes in 2 ways:
1. Using the new keyword, eg. let a = new Integer(1).
2. By using literals in 3c source code, eg. let a = 1 (strings and integers only).

The two forms are functionally equivalent and allocate instances on the heap, placing a reference
within the local function scope. The first form is somewhat less efficient, as two instances are
created, one by the literal as the constructor argument, and one created by the copy constructor.

3Pointer to pointer to structure.
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The generic Object may be instantiated, but is not functionally useful. It may be used as a void
type.

4.6.2 Printing Values

The print statement is used to print an instance. In the case of Integer and String instances,
the value field of the object is printed to standard output, followed by a UNIX line feed. Generic
Object may not be printed. Internally the print statement calls the __print method of the specified
instance via the virtual function table and calls libc printf (3).

4.6.3 Variable Assignment

The let statement is used to assign variables, eg. let a = 1. If the variable is undefined, it
is automatically defined in the symbol table of the current stack frame, before being assigned.
Assignment comprises of copying the dynamic pointer of the value into that of the variable being
assigned.

4.6.4 Conditionals and Looping

The user may conditionally execute blocks of code using the if statement. This statement comes
in two forms; with a single block or with two mutually exclusive blocks. Conditionals statements
may only compare operands of the same type. Internally conditional constructs are implemented
using IR conditional branching, much similar to microprocessor assembler code. while loops may
be used in 3c (fig. 4.12). The loop condition is checked prior to entering the loop.

if <ezpression> <conditional_operator> <expression>

if_done

Figure 4.10: Conditional - Single block form.
if <ezpression> <conditional_operator> <expression>
else

if_done

Figure 4.11: Conditional - 2 Block form.
while <ezpression> <comparison_operator> <expression>

while_done

Figure 4.12: While loop construct.
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Looping caused considerable complications due to the decision to the way variables were refer-
enced and assigned. Initially all object instances were not referenced via a double pointer, but
instead by a single pointer. Later it was noted that such an approach would lead to infinite loops,
just as long as the loop body was entered once. Consider the variable x in the program shown
in listing 4.2. Using the flawed representation, the variable is initially stored as a single pointer
reference © — 10. The loop body would enter, z is printed, and then execution arrives at the
re-assignment of z. During bit-code synthesis, the mid-layer had over-written it’s symbol table
reference to x with the new instance resulting from x - 1. Upon reaching the end of the loop body
the JIT engine branched back to the loop check and checked the old instance instead of the new
instance, leading to an infinite loop. The crux of the problem is that the loop check reference can
only be a static pointer value.

In order to overcome this a “double pointered” variable referencing approach was adopted. Con-
sider instead the variable z is initially represented as z; — x4 — 10, where z; is the static variable
pointer and x4 is the dynamic variable pointer, which is over-written upon re-assignment of the
variable. Variable look-ups are then modified to dereference 2 pointers before retrieving instance
fields. Via this mechanism, it no longer matters that the loop check construct dereferences a static
pointer, as the following pointer is dynamic, allowing, in this example a different integer value to
be compared upon each iteration of the loop. The loop then exits correctly after 10 iterations.

Listing 4.2: Loop case study program.

let x = 10
while x > O

print x

]
M

|
-

let x

while_done

A second complication of looping was related to the line-by-line parsing approach of 3c. This ap-
proached prevented parser hooks from receiving code-blocks as operands and instead conditional
and loop constructs must be cached in the mid layer, holding pointers to each block, correctly
switching IR insertion and terminating nested loops and conditionals properly.

Consider a conditional statement if a == 1 ... else ... if_done. This is represented in IR as
shown by in listing 4.3. This simple example has 4 blocks: one checks which branch of the loop
to jump to (cond_check), one for each branch body (cond_true and cond_false) and finally an
exit block (cond_exit), which is jumped to at the end of both branches of the conditional. In the
initial implementation the mid-layer simply updated it’s __current_builder state attribute upon
reaching an if, else or if done statement, effectively resuming subsequent IR generation at the
right place in the construct, terminating the relevant labels as it goes.

Listing 4.3: A simple conditional IR representation
cond_check:
%1 = icmp eq %a, i32 1
br %1, label %cond_true, label Y%cond_false

cond_true:

br label %cond_exit

cond_false:

br label Y%cond_exit

cond_exit:
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This seems simple, but watch what happens if no further logic is implemented and a while loop
(while b < 100) is nested inside the true branch of the a conditional (listing 4.4). This is in-
valid IR because: a) The cond_true block is double terminated, b) the loop_exit block is not
terminated. If this code were to be validated before execution, LLIVM would abort due to this. It
becomes clear from the previous example, that a loop or conditional block needs knowledge of
nested (child) loops and conditionals in order to correctly place branching statements. The sepa-
rate conditional and loop stacks were merged into a single one called the conditional/loop stack (or
the C/L stack)*. No conditional branches are terminated until the entire construct is complete, and
terminators are only added if the branches were not previously terminated by nested conditionals
or loops. Logic is then added to continue parent IR generation at the last child’s exit block.

Listing 4.4: A broken nested loop representation.

cond_check:

%1 = icmp eq %a, i32 1

br %1, label %true, label Y%false
cond_true:

br label %loop_check

br label Y%cond_exit
loop_check:

%2 = icmp slt, %b, i32 100

br %2, label Jloop_body, label %loop_exit
loop_body:

br label Y%check
loop_exit:

cond_false:

br label Y%exit

cond_exit:

4.6.5 Functions

3c supports the use of functions, which come in two forms: plain functions and member functions
(or methods). The user may not define member functions, as no interface for creating user classes
is yet implemented. Plain functions are defined using the func statement as demonstrated in
listing 4.5. An argument list in parentheses is required, but may be empty. Arguments within an
argument list are separated by a space character. Arguments are copied on to the local function
stack and are scoped locally to the function body, meaning that duplicate variable names may be
used in different scopes, with no fear of them conflicting. All functions must be terminated by
a ret statement. Failing to return from a function will cause compilation to be aborted by the
mid-layer, which performs static code analysis to detect such errors.

Listing 4.5: A sample function declaration.

func my_function(my_arg)
print "the arg is" + my_arg

ret O

4In the sources __c1_stack in the Compiler class.
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func_done

The calling of functions is achieved through the call statement, which takes two forms, one for
plain functions and one for member functions (listing 4.6). Plain functions are directly called,
whereas member function calls are despatched via the use of a virtual function table (or v-table)
in order to achieve polymorphism. This table is explained in depth in section 4.7.

Listing 4.6: Calling a plain function and a member function (method).

call my_function(arg)

call my_object->my_method ()

4.7 1R Tables

A lot of the functionality of 3c was implemented in the Python mid-layer because the outcome
of the operation is known at compile time, for example when the user requests a new Integer,
the type is known and code can be easily statically synthesised to call the correct constructor.
In other parts of compilation on the other hand, the outcome will greatly depend upon details
which are unknown until run-time. For example when you call a member function of a variable,
which implementation of the member function should be executed? It depends upon what type
the variable is representing, which will not be known in the mid-layer.

In the early stages of 3¢ development, it became very clear that a lot of information about classes
and methods would need to be available at run-time during JIT. Because LLVM is programmed in
an assembler language, such information must be accessible via pointer arithmetic (via the gep
and load instructions). The most suitable way to achieve this was to store a number of tables at
the bit-code level, along with some routines to manipulate and search them. 3 types of table were
devised: the type-sym table, the virtual function table (or v-table) and the polymorphic operator
table (or polyop table). Throughout the rest of this document, the short notations will be used to
refer to these tables.

4.7.1 The Type-Sym Table

The type-sym table is a cache of the class types present in the compiler and pointers to other per-
class tables. There is one type-sym table global to the entire compiler, which in the source code
is referred to as the __type_symtab. Figure 4.13 shows the structure of a record of the type-sym
table. Recall that each type in 3c has two identifiers. One is an English name which is easy for the
programmer to remember and another is an integer, called a type-sym. The position in the table
implies the type-sym, so the first type in the table will have a type-sym of zero. Pointers to the
type’s name, v-table, v-table length and polyop tables are held.

<[i8x64]* > <[16x{[i8x128],i8*}]* > <i32* > <[4x[16xi8*]]* >
Ptr to type name Ptr to v-table Ptr to v-table Length Ptr to polyop tabs

Figure 4.13: The structure of a type-sym table record.
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4.7.2 The Virtual Function Table

The v-table allows the compiler to provide a facility which selects and despatches the correct
implementation of a member function, with respect to the rules of inheritance. This is required
because the type of an object, which is having a call placed upon it, is not known until run-time.
Each class has one v-table. Figure 4.14 shows the structure of a v-table record.

During compiler initialisation, upon processing each member function declaration within a class,
a record is added to the v-table for the type in question. A record consists of a mangled function
name and a void function pointer, which points to the newly defined method. The mangled
function name is the all important part of this sub-system, as it has two purposes:

1. Identifying the correct IR function.

Upon calling a member function of an instance, the function name being called is mangled
by encoding the number of arguments into the function name. A function called inspect
with 2 outfacing arguments would be mangled to inspect [2]. An IR routine is then called®
which loops over the length of the table attempting to find a record of the same name, before
either despatching the function, or returning an error. Bear in mind that in a dynamically
typed language such as 3c, overloading of functions with the same number of arguments is
impossible, as argument types are not disclosed in the function declaration.

2. Re-casting the function pointer.

A void pointer alone is not callable, because the return type, argument type(s) and number
of arguments are not known. Before 3c can call the desired function, the void pointer®
must be bit-casted back up to it’s original implementation. Because 3c uses a generic Object
during member function despatch the correct function signature can easily be derived. Each
function call will always return Object and will have the same number of arguments (also
as Objects) as in the square brackets of the mangled name. Once the void pointer has
been casted to the correct pointer type, the function may be called. This is cumbersome
but necessary as each v-table record must be of identical type (void pointer) to be valid for
storage.

<[128xi8] > <ig* >
Mangled Function Name | Void Function Ptr

Figure 4.14: The Virtual Function Table Record Structure.

4.7.3 Polymorphic Operator Tables

3c uses a polymorphism concept called operator overloading for any expression which contains ad-
dition, subtraction, multiplication or division operators. In 3c these operators are called polymor-
phic operators. Such an approach allows a user-definable way of applying mathematical operators
to objects of different types. For example, what should happen when the user executes a statement
such as print "my age is: " + 2? Logically this is impossible in many computer languages,
including LIVM assembler. However by using a polyop table, 3c achieves more user-expectable
results from adding objects of different types.

The operator overloading system of 3c was heavily influenced by that of the C++ programming
language. Listing 4.7 shows a C++ program which implements operator overloading. The way

5__vtab_lookup().
6<i8 * > is a void pointer in LLVM IR.
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C++ achieves this is via methods named specially with an operator prefix followed by an op-
erator symbol. The argument type then denotes the type which is being added to the type of
the current class. 3c closely emulates the C++ naming convention for operator overloading, but
due to differences in typing systems is unable to use argument types as an identifier. C++ is a
statically typed programming language, whereas 3c is dynamically typed and so the compiler will
never know the types of the arguments of a member function until run-time. To overcome this,
the member function name has further information encoded inside it, as shown in figure 4.157.

int A::operator+(int other) — func oper+int[1] (other)

(a) C++ Operator Overloading (b) 3c Operator Overloading

Figure 4.15: The 3c polyop encoding scheme.

Listing 4.7: A C++ program demonstrating operator overloading.

#include <iostream>

class A {
public:
A(int);
int operator+(int);
int num;
3

A::A(int newNum) {

num = newNum;

int A::operator+(int other) {
int i = num + other;

return i;

int main(void) {
A a1l = A(666);

int result = al + 1;
std::cout << result << std::endl;

return O;

The mid-layer of 3c builds an IR routine on the fly (prior to JIT execution), which is called at the
beginning of the main IR function at run-time (prior to any user-program execution). This routine
loads any 3c methods which appear to be operator overloading semantics into a a polyop table
structure. An example polyop table is shown in figure 4.16. Each class in the system has one

7This is a direct translation, and the types do not exist in 3c.
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polyop table, each comprising of 4 rows, one for each operator and a number of columns, one for
each type in the system, indexed by type-sym. The table is essentially a matrix of void function
pointers to member functions which specialise in performing various operator overloading tasks.
The pointer may be re-casted (in much the same way as in the v-table) and called. The returned
object will contain the result of the operation. There is a special case where the pointer may
be null, indicating that the operation is invalid, like in the case of subtracting a string from a
number. Such an operation makes no sense, so compilation is aborted. The routine that performs
the lookup is the __polyop() method of the generic Object class, which is therefore inherited by
every class in the system.

H type-sym O | type-sym 1 | type-sym 2 | ...
polyop + <i8* > <i8* > <i8* >
polyop - <i8* > <i8* > <i8* >

polyop * <i8* > <i8* > <i8* >
polyop / <i8* > <i8* > <i8* >

Figure 4.16: The structure of a polymorphic operator table.

The built-in classes use this mechanism thoroughly, even for operating upon instances of the same
type and although user-classes are not implemented yet, when (and if) they are, the existing code-
base will dynamically accommodate this feature. All the user would need to do is define member
functions adhering to the naming convention discussed above.

4.7.4 Example Table Usage

To clarify the function of the IR tables, a simple example can be presented which makes use of all
three tables. Take the 3¢ program shown in listing 4.8 as a case study.

Listing 4.8: Table test program.

let a = 42 + " is the meaning of life"

call a->inspect ()

The flow of execution is as follows:
1. The Integer class constructor is called in order to create an instance of 42.

2. The String class constructor is called in order to create an instance of "is the meaning of
life".

3. The __polyop() method of 42 (inherited from Object) is called, the first argument is an
operator identifier of <i32 0> (for plus®) and the second argument is the operand instance
of " is the meaning of life".

4. The type-sym attribute of the instance being operated on (42) is extracted. For an integer
this is 1.

5. The Integer type-sym record is extracted from record number 1 of the type-sym table, as
determined by the last step.

6. The pointer to the polyop table for this class (Integer) is extracted from the type-sym record.

80: +,1:-,2: %,3:/

Rev: 272, May 21, 2009 34 3c-compiler-Edd-Barrett.tex



Edward Barrett 3c - A JIT Compiler using LIVM

7. The record corresponding to the operator offset is extracted from the type polyop table, in
this case 0 for plus.

8. The type-sym attribute is of the operand instance (" is the meaning of life") is ex-
tracted. For a String, the type-sym is 2.

9. Void function pointer number 2 of the polyop record (from stage 7) is extracted. This will be
a pointer to the oper+String[1] () member function of the Integer class. The pointer was

placed there under instruction of the mid-layer by an IR routine called __add builtin vtabrecs(),

which was called in 3¢’s main () prior to any user code.
10. The pointer is re-casted and called.

11. Execution is handed off to the oper+String[1] () member function of the Integer class,
where a new string is constructed and returned: "42 is the meaning of life". Internally
this is achieved by call to libc snprintf ().

12. In turn __polyop() passes directly back the new string instance to the caller, therefore com-
pleting the operator overloading section of execution.

13. The result of the polyop operation is assigned to the variable a.

14. The name of the member function inspect () is mangled to inspect [0] so that it conforms
the v-table encoding scheme.

15. The IR routine __vtab_lookup() is called with the mangled name and class’ type-sym as
arguments.

16. Execution is handed to __vtab_lookup() and the type-sym attribute of the instance being
called upon (the new concatenated string) is extracted. For a string this is 2.

17. The type-sym table is consulted again, and the record at index 2 (for String) is extracted.
18. The pointer to the v-table for this class is extracted from the type-sym record.

19. The v-table for the class is now searched for the record corresponding to the requested
method name in mangled form.

20. The correct record is found and the void function pointer (in this case to the String class’
inspect () function) is extracted and returned.

21. Finally, the void function pointer is re-casted and called.

4.8 Optimisation

The 3¢ compiler may optionally apply LIVM optimiser passes to the internal representation of the
program prior to JIT execution. Optimiser passes are applied within the 3c mid-layer under the
instruction of an optimiser configuration. If any passes are enabled, they are applied one-by-one on
the in memory bit-code. LLVM has the option to apply optimisations on a per-function basis, but
this feature was not used in 3c and the whole IR module is transformed by the optimiser instead.

The configuration file is stored in a hidden file in the user’s home directory ("/.3crc). If this
file is non-existent when 3c executes, a blank configuration with no passes enabled is created.
This configuration may be edited using either a text editor like vi or via 3¢’s built-in optimisation
configuration editor. The built-in editor is invoked by running 3¢ with the -c switch. Using the
built-in editor has the advantage that the user need not look up the LIVM pass number, as symbolic
names are displayed during editing. The file itself is a simple list of pass numbers, one per line.
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4.9 JIT

The last thing the mid-layer has the option to do is execute the completed IR module via JIT
compilation. A “dry run” may be performed with the -d flag, which causes 3c to only parse and
synthesise before aborting instead of executing the module. Another useful flag -b causes 3c to
dis-assemble and dump it’s bit-code into an LLVM assembler file on the disk. Unless the -o flag is
used with -d, the user is prompted for the file name of the IR dump prior to JIT. More information
on these flags is available in section B.2.

4.9.1 Run-Time Errors

Although compilers attempt to detect as many errors as they can, some errors can not be detected
prior to execution. This statement especially holds true for dynamically typed languages such as
3c, where little is known about the type of variables at compile time. Due to this a number of
routines are implemented in IR, which check for semantic errors during JIT execution. In such
cases, 3c is able to detect and abort execution, preventing undefined behaviour. The following
cases cause execution abortion:

Bad comparisons. 3c can only compare instances of the same type, so comparing a String in-
stance to an Integer instance will result in an error.

Inapplicable polymorphic operations. If semantics for a polymorphism operation are not imple-
mented, for example, 666 - "some string", the compiler will exit.

Division by zero. Division by zero is an impossible mathematical operation. Attempting to per-
form this would have caused LIVM to segmentation fault, so a suitable error message is
displayed and compilation is aborted instead.

Calls to invalid member functions. If no v-table record exists for a member function, the user is
requesting a non-existent member function, so 3¢ aborts.
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3cin Practice - System Testing and

Evaluation

Exhaustive testing is impossible. This is an assumption made. because: A) Developers can never test a
piece of software on every end user’s software and hardware configuration. B) Often it is very difficult
to test every sequence of user input and C) Computer programs are not always deterministic [Barrett,
2009]. For this reason software engineers have developed testing techniques which aim to capture a
large subset of software faults in a shorter time as possible. Derived from these techniques, a set of
system test cases were written in order to validate the behaviour of the compiler is correct. Quick tests
were also run ad-hoc after each iteration of the spiral model, checking that the new functionality of
each iteration had not broken any previous functionality.

5.1 Test Cases

5.1.1 Boundary Value Analysis Tests

Boundary value analysis is a form of black-box testing which builds upon the concept of equivalence
partitioning [Myers, 1979] [Roper, 1994]. A partition can be defined as a range of inputs where
the output is likely to be the same. By testing upper and lower the boundaries of a partition, the
tester assumes that all other values of the partition have also been tested. Although the approach
is limited, as combinational inputs may invalidate the assumption, it is the author’s opinion that
it does lend it’s self particularly well to testing conditional statements. A set of boundary value
analysis tests were devised in order to validate the behaviour of conditionals within the 3c source
code implementation. The test cases and their outcomes are shown in appendix C.2. The same
logic is used for loops, so it was assumed (due to time constraints) that the tests need not be
repeated.

Every test apart from one succeeded, revealing a fault in the logic of the inequality operator. After
inspection, a trivial error was found, which related to the change to the double-pointered instance
representation. A bitcast instruction was casting a pointer to the old single-pointered instance
representation type. A fix was devised (listing 5.1) and regression tests were executed, to ensure
the fix had not introduced further software faults. All regression tests passed.

Listing 5.1: Unified diff showing the inequality operator bug fix.

Index: ccc_compiler.py

--- ccc_compiler.py (revision 235)
+++ ccc_compiler.py (working copy)
@@ -2104,7 +2104,7 @@

eq = m.get_function_named (mang)

3c-compiler-Edd-Barrett.tex 37 Rev: 272, May 21, 2009



Edward Barrett 3c - A JIT Compiler using LIVM

ret = b.call(eq, [ func.args[0], func.args[1] ])
- ret_i = b.bitcast(ret, Type.pointer( \

+ ret_i = b.bitcast(b.load(ret), Type.pointer( \

self.__mk_object_struct ("Integer")))

# get the int out

5.1.2 Fibonacci Sequence

The Fibonacci sequence is a good test for compilers for two reasons. Firstly it confirms that the
compiler is able to synthesise recursive code properly without variables of the same name clashing
between stack frames. Secondly running Fibonacci on large numbers provides a suitable length of
execution time to be used as a performance benchmark. A series of tests were run to confirm that
stack frames and recursion were properly implemented by the 3¢ compiler. The fib program shown
in listing C.2 was run 10 times, both with and without optimisation enabled. The optimised tests
had a number of LIVM transforms applied, which unrolled loops, in-lined functions, combined
statements, marked functions internal and eliminated dead code (see optimiser configuration in
section C.1). Out of curiosity, byte-code and native code were dumped to disk using the -d option
of 3c and tested in a similar manner. The byte-code was planned to be executed in a purely
interpreted (no JIT) fashion using the 11i utility, but unfortunately the interpreter functionality of
LIVM-2.4 is incomplete and was unable to interpret the code!. The binary was made by using the
11c utility following by using GCC (with the optimiser off) to assemble a binary. The size of the
code generated by the program and the execution times were also noted. Similar programs were
implemented in Lua (listing C.4) and Java (listing C.3) so as to provide a performance comparison.
The results are shown in tabular and graphical form in figure C.3.2. The test passed, but there
appears to be some performance issues, which are discussed in section 5.2.3.

5.1.3 Nesting Test

As described earlier, the CL (conditional/loop) stack had become somewhat over-complicated and
it was identified as an area likely to contain software faults. For this reason, a nesting test was
devised (listing C.5). This test nests loops and conditionals in a function at varying depths. No
software faults were detected with this test.

5.2 Evaluation

At this stage, 3c has been developed from an idea, through 15 iterations of a spiral development
methodology, before becoming mature enough for evaluation. In this section, iteration 15 of the 3c
compiler is critically evaluated, highlighting both good aspects and shortcomings of the 3c implemen-
tation and development process.

TERROR: Constant unimplemented for type: [7 x i8]
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5.2.1 Evaluation of Development Technique

As expected, the iterative development life-cycle offered by the spiral model fitted the nature of
the project very well. In total 15 iterations occurred (fig. 5.1), each adding a single feature or
set of related features. Iterations 2 and 11 were not finished, as the development priorities were
re-prioritised. Phase 2 involved adding a second pass of the parse tree, which would have allowed
a program to call a function not yet defined until later in the 3¢ source code, for example. This
feature was buggy and is purely a nicety, so it was delayed with the intention of re-visiting it later.
Iteration 11 was user-classes and was also aborted due to time constraints. Further development
would have a) allowed less time for system testing and documentation and b) possibly introduced
software faults, which may not have been detected in the (now shorter) testing time allocation. It
is the author’s view that it is better to release a bug-free product than one including new feature x,
which has not been tested properly and probably contains software faults. The spiral methodology
provided enough flexibility to re-work the development cycle, whereas other methodologies which
required a solid design decision would not have accommodated this development flow. For this
reason the spiral model would certainly be used again for a research based project. The disaster
recovery measures described in section 3.2 were not required, as no data loss was incurred. The
bug tracking system was used fairly minimally, as most bugs were fixed as soon as they were
encountered.

Basic numeric calculations.

Second pass on the parse tree (disabled).
Variables with global scope.

Functions (with no arguments).

Function stack frames and local variables.
Function arguments.

Object hierarchy and v-table.

User constructors and Integer Class replaces i32.

W o No R W=

String Class.

—_
e

Operator overloading polymorphism.

[
—_

. User classes (aborted).

[
N

. Looping and conditional statements.

Juy
w

. Double-pointered object references.

—_
N

. Re-integrate flat functions.

—_
|92}

. Optimiser functionality.

Figure 5.1: Iterations of 3c.

The subversion source code management system provided an invaluable record of changes to
the 3c source-base. As expected branching accommodated the iterative nature of the project.
Inspection of the phases folder within the project distribution will confirm this. Some iterations
have intermediate branches, which were used when the task at hand was becoming large. On
several occasions changes had introduced bugs and a question arose; What has changed which
could be affecting this? In such a case the diff function of subversion was able to show which
parts of the program had changed and in most cases the bug could be traced quickly.
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5.2.2 Evaluation of Design and Implementation

Most of the design choices made throughout the development cycle of the project were well thought
through and proven in practise, however as mentioned previously a couple of bad design choices made
in early iterations stunted development in the late stages of implementation.

Starting with good aspects of the system, it is believed that Python greatly accelerated the devel-
opment of the project. The list and dictionary data structures of Python were particularly well
suited to representing the various stacks and their corresponding records within the mid-layer.
By comparison, the Python data structures provide much higher level operations than the C++
vector class does, which would have been used otherwise. Python is also in a state of version
limbo. Python 3.0 has been released and breaks backward compatibility of Python 2.x. Software
projects have either quickly adopted version 3, or are holding off until more projects start using
version 3. Luckily all Python components used in 3c, were of the latter disposition and no incom-
patibility issues were encountered. The only minor quibble with using Python and llvm-py for 3¢
was that the host system will require LLVM, Python and the bindings at all times in order to run
3c programs. If C++ were used, a standalone static binary could be built, which has no runtime
dependencies.

LIVM lived up to it’s expectations, providing a JIT execution environment, strict typing and good
bit-code verification. This allowed a large amount of programming faults to be discovered prior
to JIT execution. The developed system, although untested on platforms other than OpenBSD,
should be very portable thanks to LIVM’s development model. There were however a few minor
criticisms, which should be noted. When developing a LIVM module, the author advises the
developer to be very careful with the bitcast instruction. This instruction casts one pointer type
to another and was used for type conversion within 3c. This instruction is quite dangerous, but
necessary, as it will do exactly as it is told. If LLVM is told to bitcast a string pointer to an integer
pointer, it will do so, possibly resulting in erroneous behaviour. This was a common method of
introducing faults during 3c development. It is advised bitcast operations are carefully checked.
It is also questionable as to whether the typing system of LIVM is too strict. Do arrays of different
lengths really need to be seen as of different type? In many cases strings (character arrays), were
casted to different lengths, purely to satisfy LLIVM’s type checker. Whilst this is good in a way
because it causes the programmer to think carefully about the design of his/her types, it also
encourages further use of the perilous bitcast operation.

LIVM’s static analysis of bit-code appears to be very capable. It was noted that a 3c was unable
to return an instance from a function, which is always defined, but within either the true or false
branch of a conditional statement (and not outside the conditional). By commenting line 6 of
the Fibonacci test, one can reproduce this behaviour (listing 5.2). The instance result is always
defined, but the LIVM verifier throws an error (listing 5.3). This is because if the mid-layer symbol
table does not know about the result variable prior to the conditional statement, then it can not
know about the different registers which result is assigned to in each branch of the conditional
statement. The first version of result is the one returned and LIVM successfully realises that the
second can not be returned at-all, aborting compilation.

Listing 5.2: Commenting line 6 of the Fibonacci test

#!/usr/bin/env 3c
# Fibonacci number generator

# $Id: fib2-sa.3c 264 2009-05-20 14:21:56Z edd $

func fib(n)
# let result = 0
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if n <=1

let result = n
else

let n1 = n -1

let n2 = n - 2

let result = call fib(nl) + call fib(n2)
if_done

ret result

func_done

let loop = 0
let out = ""

while loop < 25
let out = out + call fib(loop) + " "
let loop = loop + 1

while_done

print "Your Fibonacci numbers:"

print out

Listing 5.3: Error code resulting from commenting line 6 of the Fibonacci test

Traceback (most recent call last):
File "/home/edd/proj/3c/phases/final/3c", line 276, in <module>
ccc.start ()
File "/home/edd/proj/3c/phases/final/3c", line 161, in start
self.__jit )
File "/home/edd/proj/3c/phases/final/3c", line 177, in __jit
self.__dump_bc, self.__dump_file)
File "/home/edd/proj/3c/phases/phase-15/ccc_compiler.py", line 690, in
execute
self.__mod.verify ()
File "/home/edd/proj/python-2.6.1/1ib/python2.6/site-packages/1llvm/core.
py", line 947, in verify
raise llvm.LLVMException, ret
llvm.LLVMException: Instruction does not dominate all uses!
%46 = malloc { i32% }=* ; <{ i32% }xx> [#uses=2]
store { i32x% }x %49, { i32x% }xx 46
Instruction does not dominate all uses!
%46 = malloc { i32* }«* ; <{ i32% }xx> [#uses=2]
ret { i32x }x*x 46

Broken module found, compilation terminated.

The first serious design flaw of 3c, was the decision of parser. The Aperiot parser was chosen
because it was easy to integrate with the other components of the project. Aperiot is written in
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pure Python and so was easy to install, it has a grammar description syntax not unfamiliar to the
well understood and documented yacc, meaning that there was little learning needed to use it as a
part of 3c. In hindsight, more time should have been spent inspecting parsing algorithms. Perhaps
the serious limitations of the LL(1) method would have become apparent before the parser was
integrated. As a result, the grammar of 3c was slightly modified, but not too drastically, still clear
and simple, just somewhat wordy. Having criticised Aperiot, it is worth mentioning that as far as
LL(1) parsers go, it is a very good implementation and it probably would be used again, perhaps
just for parsing simple configuration files and not programming languages.

The “double pointered” instance representation was over-looked. This was due a C programming
concept which was wrongly assumed to be present in LIVM assembler. In C the & operator may be
used to get the memory address of a variable (listing 5.4). If such a function existed in LIVM, then
a single pointered instance representation would have sufficed, however there is an important
realisation which was not made as to why this can not be possible in LIVM; the memory address
of a register can not be obtained. Such an operation is just inherently impossible in the design of
a virtual machine (and in a real machine). There is a workaround and it is the same one which
was described earlier in this document (section 4.6.4), which is to provide a pointer with a known
address, within which storing a pointer which can change therefore making a double pointer
arrangement. Modifying the whole compiler to reflect this change was both time consuming and
introduced bugs, one of which went un-noticed until system testing (section 5.1.1), so this was a
lesson well learned.

Listing 5.4: Use of the ampersand operator in C.

#include <stdio.h>

int main(void) {
int a =1;

printf("’a’ is stored at Ox%x\n", &a);

return O;

5.2.3 Evaluation of Testing

The testing strategy was not as formalised as it should have been, but was present and effective. As
planned the end of each iteration included various tests, which confirmed that the work in the most
recent implementation had not broken a previous iteration’s features. It was not uncommon to find
breakage in the code base at this stage, in which case the faults were investigated and resolved,
before regression testing was performed. These tests could and should have been implemented in
software in the form of unit tests or via an external test framework like DejaGnu [DEJ, 2009].

The documented system testing revealed that as expected, JIT execution slower than native ex-
ecution. Unfortunately no comparison to interpreted 3c byte-codes could be obtained, but it is
thought that it would be much slower than with JIT. Oddly the optimised version of the fib pro-
gram was marginally slower than the non-optimised version, which was thought to be because the
optimiser itself takes a little time to run, but this does not account for why the optimised native
binary is slower, as optimisation took place at compilation time not run-time. More research is
needed in this area.

The performance of 3c seems rather sluggish in terms of both start-up time and in execution time.
Lua and Java were found to outperform a JIT executed, speed optimised 3c £ib(25) program
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by an average of 27 times. The start-up time of 3c is related to the JIT engine building newly
encountered code paths for the first time. This can be confirmed by writing a program which
immediately uses the print statement and then timing program execution using both JIT and
native execution. When run using JIT, the program will take about 6 seconds to execute the initial
print statement, whereas when running a native binary made from an assembler dump, the print
statement is executed almost immediately.

Start-up time can not account for why the Fibonacci test took as long as it did for 3c. Less the 6
second start-up time of the JIT engine, an optimised £ib(25) program takes on average 11.206
seconds. The initial thought regarding this was that the string comparisons of v-table lookups were
slow and inefficient. A quick experiment was run in an attempt to confirm this. The vast majority
of the v-table look-ups of the fib program are for the <= comparison operator and this only occurs
in the fib program for integers. The member_call() method within the mid-layer was modified
to directly call the __comp_1te() IR method of the Integer class, therefore completely bypassing
the v-table altogether and with any luck eliminating some of the execution time associated with
v-table look-ups. By doing so about one second of execution time can be shaved off, which does
suggest that the v-table could be optimised (by using an intermediate cache?), but does not explain
what is causing execution time to be so slow.

Next the optimisation passes were placed under scrutiny and the LIVM assembler dumps of an
optimised and an unoptimised £ib(25) program were compared. Indeed the code had been trans-
formed, adding 651 lines of assembler code through what was assumed to be in-lining, however
further inspection revealed that there were 37 function declarations in both versions of the as-
sembler code. The dead code elimination pass was verified to be enabled too, meaning that LLVM
failed to in-line any IR functions at-all. Following this a simple contrived LIVM program was de-
veloped (independent of 3c) which was clearly not optimal, then the same LIVM optimiser passes
were applied. Section C.5 shows both the un-optimised and optimised IR code. The code had been
reduced from 58 to 18 lines and JIT execution time had fallen from an average? of 30.37 seconds
to just 4.5 seconds. This confirms that the optimiser passes are working properly. It would be
interesting to discover why LIVM is not able to optimise 3¢ code as well as this, but unfortunately
once again time restrictions disallow this.

The most frustrating aspect of testing 3c, is that it was impossible to get a larger test sample
from the Fibonacci test, due to 3¢ not having any garbage collection or stack frame clearing. It is
common in general purpose programming languages for a function, upon returning to clear the
memory it allocated for it’s arguments, local variables and constants. This is what is meant by
“stack clearing” and garbage collection refers to the act of automatically freeing instances which
are no longer referenced at run-time. These features never made it into 3c, but were lined up to
be the next 2 iterations of development. As a consequence 3c uses vast amounts of memory. In the
test environment (listing C.1) the operating system (OpenBSD) aborts a fib (26) program because
it exhausts the default maximum heap space of 512MB. Increasing the maximum heap space
causes the system to thrash (constant paging between physical memory and disk virtual memory),
therefore invalidating any performance comparisons with other language implementations, as
disk IO is much slower than memory IO. Java and Lua can do much larger Fibonacci functions in
memory without paging.

5.3 Future Improvements

Like any software product, 3c could be improved. This section highlights some ideas which could
improve 3c.

2An average of 3 runs.
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5.3.1 Critical Improvements

The memory usage of 3c is unacceptable and stack frame clearing and garbage collection should
be implemented as soon as possible. Stack frame clearing should be trivial, but as for garbage
collection, there are two ways this could be achieved. The first approach would be to maintain
a table of allocated instances along with a count of how many references there are to each. At a
regular interval, records in the table with no references can be freed. The second method would
be to attempt to use an automated garbage collector like Boehm [Boehm, 2009], which may
require custom Python and/or LIVM builds linking a special library. Implementing either of these
techniques will cost run-time CPU cycles, but should hugely improve the memory consumption
of 3c. The LIVM project has some information about implementing garbage collection on their
web-page [Lattner and Henriksen, 2009].

The performance of 3c has a lot of room for improvement. By fixing the memory management
of 3¢, a performance gain could result. If 3c causes fewer memory allocation system calls, pages
of memory may not fragment as much, meaning the operating system will spend less time de-
fragmenting small non-contiguous memory pages. Failing this, a different approach to improving
performance should be considered, perhaps by profiling 3c in some way and finding which as-
pects of the system take longest to execute. The LIVM opt utility has some profiling functional-
ity [Spencer, 2009] which could help.

5.3.2 Non-Critical Improvements

The line-by-line parsing approach of 3c works, but as explained earlier, has introduced some
complications in the handling of the C/L stack in the 3¢ mid-layer. Annoyingly feature requiring
this awkward parsing approach (an interactive shell) was not implemented due to lack of time,
meaning the system suffered for no real reason. 3c could be improved by parsing the code between
conditional and loop constructs as an atomic block. This approach means that pointers to the IR
assembler labels would not have to maintained and perhaps the whole C/L stack would become
redundant. Using blocks in this way is common in programming and scripting languages, for
example in the Ruby scripting language. Figure 5.5 shows a (multi-line) block in Ruby source
code and the corresponding parser grammar is shown in figure 5.6, where opt_block_param is the
token representing a block.

Listing 5.5: Example Ruby block.

for i in (1..10) do

print i # <- block content

end
Listing 5.6: Block parser grammar for Ruby [RBP, 2009].
brace_block : keyword_do
{
AYYYAYS
dyna_push () ;
$<num>$ = ruby_sourceline;
/*%
hx/
}

opt_block_param
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compstmt keyword_end

{
/*Nhhh*/
$$ = NEW_ITER($3,$4);
nd_set_line ($$, $<num>2);
dyna_pop () ;
/%%
$$ = dispatch2(do_block, escape_Qundef ($3), $4);
hx/
}

Currently 3c is a single pass compiler, meaning that the parse tree is traversed only once, which
is at the time the parser actions are applied. 3c could be improved by adding another pass prior
to the existing pass. Firstly this would allow ineffectual nodes to be removed from the parse tree,
resulting in an AST. Secondly it would allow for example, a function to be called at the top of a
source file which is defined at the bottom of the file, but most importantly, it could be used to inject
code to define variables at the start of a function (possibly using a PHI node [Lattner, 2007]), so
that the programmer can have confidence that the ”Instruction does not dominate all uses” error
can not be achieved. Work did start on this in iteration 2 of development, but was found to be
buggy. As this was not essential to the function of 3c it was postponed allowing features of higher
priority to develop instead.

Some minor extra syntactical sugar could be added to the 3c syntax, such as and and or statements
in conditionals and for and do..while loops. Such statements can be re-factored into already exist-
ing 3c syntax, however some programmers would expect these constructs to exist. It would also be
nice to be able to use expressions as function call arguments. For now only literals and variables
may be used as arguments to functions because of LL(1) shortcomings. Perhaps a different parser
should be used.

File Lines %

ccc.py 277 6.62

ccc_compiler.py 3659 87.34
ccc_opt_conf.py 227 5.421
glue.py 24 0.57
total 4187 | 100.00

Figure 5.2: Distribution of lines of code in the 3¢ mid-layer.

Unfortunately the Compiler class of the 3¢ mid-layer has become large and contains a vast collec-
tion of instance variables. In software engineering lingo the code is said to exhibit the “large class
code smell” [Fowler, 1999]. Figure 5.2 shows the distribution of the lines of code through-out
the Python source code of 3c, revealing that the Compiler class accounts for 87% of the code.
Most of the code in this class is structure and member function definitions for built-in types. In
the interest if code clarity and maintainability, this class should be re-factored [Atwood, 2006]. A
proposed re-factoring is shown in figure 5.3, where 3c class and member function definitions have
been separated from the compiler class.
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Proposed 3c Mid-Layer )
Parser CccCcC
OptConf Compiler CompilerException
CccObject
CccString Cccinteger SomeUserClass

Figure 5.3: Proposed class re-factoring of the 3¢ mid-layer.

5.3.3 Enhancements

Currently 3c’s class hierarchy can not be extended. This makes it limited to string and integer
types and operations, which for most programmers will not be enough. The implementation of
user classes, would allow programmers to make their own classes based upon the built-in classes,
via the inheritance mechanism already existing in 3c. This was considered as an iteration in the
late stages of development, but discarded due to time constraints.

A common extension to computer languages are bindings to external libraries, allowing the pro-
grammer to source functionality from elsewhere (usually from a C library) and use that function-
ality within the source code of the language. Often preparing a language to interface with external
libraries requires a small shared object wrapper to be developed, which converts C types into that
of the programming language in question and despatches the C function calls to the library it-
self [The Python Development Team, 2009] [Jung and Brown, 2007]. LIVM potentially has the
ability to allow 3c to be extended without needing an intermediate shared object. This is because
(as discussed in section 2.6.3) LLVM can call system C functions already, however types would still
need conversion. Perhaps extending 3c could be achieved by describing directly in (extended) 3c
source language, the interactions with external libraries, without the need for any C shared object
wrappers. Without further research and experimentation, it is difficult to say.

5.4 Conclusion

Overall LIVM, even in it’s unfinished state, facilitated the construction of 3c comfortably. LLIVM
has proven to be the most flexible compiler construction kit encountered by the author, provid-
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ing many features others do not, such as native code generation facilities, customisable optimiser
passes and pure interpretation/JIT options. It is suitable for writing both small plug-in languages,
but as proven here, also for fully fledged object oriented languages with polymorphism and in-
heritance. This research has also confirmed that compiler construction is no longer constrained
to low level languages like C. The entirety of 3¢ was implemented in Python and many other
bindings exist, providing low level assembler programming with the convenience of a high level,
richly featured scripting language. Following on from this, a wider range of parsing and tokenising
tools become available to the developer, such as the one used here (Aperiot), however one should
consider carefully the parsing algorithm a parser implementation uses, as the LL(1) algorithm was
somewhat limited.

The spiral development model accommodated well, the experimental nature of the project al-
lowing the flexibility of an un-finalised design and set of requirements which are free to evolve.
Such a development model is highly recommended for research based and open-source projects,
where design is important but evolutionary. Source control packages like subversion are highly
recommended, even in a single developer project. Source control was invaluable as a backup and
debugging aid throughout the development of 3c. Although the disaster recovery measures imple-
mented were not needed, it gives the author great confidence that they were there, should data
loss have occurred.

The only unfortunate elements of 3¢ (which are not blamed on LIVM), were its memory footprint
and performance compared other languages. Given further time perhaps these issues could have
been investigated in further detail and resolved. Aside from these set-backs, the author feels that
the project was successful, that many lessons were learnt via the fabrication of 3c and that it is a
huge personal achievement.
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3¢ Documentation

B.1 Installation Instructions

In order to install 3¢ you will need to install LLVM-2.4, Python-2.6 and llvm-py-0.5. 3c may work
with other versions of these components, but are untested.

1. Copy the phase-15 directory out of the distribution into the destination installation directory.
2. Add the phase-15 directory to your system PATH.

3. Run python ccc.py < arguments >.

B.2 Manual Page

NAME

The 3¢ Compiler

SYNPOSIS

3c [-b] [-c] [-d] [-o dumpfile] [-v] [-V] program

DESCRIPTION

The 3c compiler is a pure object oriented programming language which is executed using the
LIVM JIT engine. It is not designed for general purpose use, but instead as an example of how to
write JIT compiler using the LLIVM compiler construction kit.
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COMMAND LINE OPTIONS

program

HISTORY

Causes 3c to dump a byte-code file prior to JIT execution. The name of
the file will be prompted unless -o is specified.

Enters the interactive optimiser configuration editor before compilation
begins.

Causes 3c to do a “dry run”. The process will exit after parsing and IR
generation.

Used with -0 in order to specify the byte-code dump file name.

Causes the 3c mid-layer to print miscellaneous debugging information,
such as parser hook information.

Turns on settrace() based debugging. For use by developers only.

Path to a 3c source code file.

3c was developed as a Bournemouth University final year project in the years 2008 and 2009.

CAVEATS

3c does no garbage collection or stack frame freeing.

AUTHORS

Edward Barrett <eddbarrett@googlemail.com>

Operator Comparison

== Equality

= Inequality

Greater than

Less than

= Greater than or equal to
= Less than or equal to

Figure B.1: Valid comparison operators for 3c.
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B.3 3c Syntax Reference

Construct

Description

pass

Do nothing.

print <expression>

Calls the object returned by <expression>’s
_print () method. In the case of the String
and Object classes, this prints the value of the
object to standard output.

let <var> = <expression>

Assign and if not already defined, de-
fine variable <var> to the return value of
<expression>.

func <func> Define a function named <func>. Statements
up until the next func done are taken as the
body of the function.

func_done End a function block.

ret <expression>

Return the evaluated value of <expression>
from the current function.

call <func> ([<arg'>] [...] [<arg">1)

Call a function named <func>with argument
list <arg'> ...<arg™>. An argument may be
a Integer/String constant or a variable name.
Argument lists may be zero length.

call -> <method> ([<arg'>]11[...] [<arg">])

Call a method named <method> with argu-
ment list <arg'> ...<arg">. An argument
may be a Integer/String constant or a variable
name. Argument lists may be zero length.

new <obj>([<arg'>][...] [<arg">1])

Instantiate a new object of type <obj>, passing
argument list <arg!> ...<arg"> to the con-
structor. An argument may be a Integer/String
constant or a variable name. Argument lists
may be zero length.

if <expression> <comp_op> <expression>

Conditionally branch to the next block if
<expression> <comp_op> <expression> re-
turns true, otherwise branch to the else block
of the conditional (if it exists). If the condition
evaluates false and an else block is absent, ex-
ecution resumes after the next if_done. See
figure B.1 for a list of valid comparison opera-
tors.

else Define a the block to jump to in the event
that the proceeding conditional statement eval-
uated false.

if _done Terminate a conditional statement.

while <expression> <comp_op> <expression>

Iterate the block up to the next while_done
while <expression> <comp_op> <expression>
evaluates true. The block will either execute in
full or not at all. See figure B.1 for a list of valid
comparison operators.

while_done

Terminate a while loop.

An expression may be any of the following: <numeric literal>, <string literal>, new, call,
<expression> <poly operator> <expression>, (<expression>).
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Testing Materials

C.1 Test Environment

Listing C.1: The test environment configuration, as reported by dmesg(8) .

1 OpenBSD 4.5-current (GENERIC) #88: Tue Apr 21 19:44:23 MDT 2009

2 deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/compile/GENERIC
3 cpuO: Intel(R) Pentium(R) M processor 1700MHz ("GenuineIntel" 686-class)
600 MHz

4  cpu0: FPU,V86,DE,PSE,TSC,MSR,MCE, CX8,SEP,MTRR,PGE,MCA,CMOV ,PAT,CFLUSH,DS,
ACPI ,MMX,FXSR,SSE,SSE2,TM, SBF ,EST, TM2

5 real mem = 1072656384 (1022MB)

6  avail mem = 1028902912 (981MB)

7 mainbusO at root

8 biosO at mainbusO: AT/286+ BIOS, date 09/22/05, BI0OS32 rev. 0 @ 0xfd750,

SMBIOS rev. 2.33 @ 0xe0010 (57 entries)

9 biosO: vendor IBM version "1QET97WW (3.02 )" date 09/22/2005

10  biosO: IBM 2673W7Z

11 | apm0 at bios0O: Power Management spec V1.2

12  apmO: battery life expectancy 99%

13 apmO: AC off, battery charge high, estimated 2:51 hours

14 ' acpi at biosO function 0x0 not configured

15  pcibiosO0 at biosO: rev 2.1 @ 0xfd6e0/0x920

16 | pcibiosO: PCI IRQ Routing Table rev 1.0 @ Oxfdea0/272 (15 entries)

17  pcibios0O: PCI Interrupt Router at 000:31:0 ("Intel 82371FB ISA" rev 0x00)

18 pcibiosO: PCI bus #6 is the last bus

19  biosO: ROM list: 0xc0000/0x10000 0xd0000/0x1000 0xd1000/0x1000 0xdc000/0
x4000! 0xe0000/0x10000

20  cpuO0 at mainbusO: (uniprocessor)

21 | cpuO: Enhanced SpeedStep 600 MHz (956 mV): speeds: 1700, 1400, 1200, 1000,

800, 600 MHz

22| pci0 at mainbusO bus O: configuration mode 1 (bios)

23 io address conflict 0x5800/0x8

24 | io address conflict 0x5808/0x4

25 | io address conflict 0x5810/0x8

26 io address conflict 0x580c/0x4
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27 | extent ‘pciio’ (0x0 - Oxffff), flags=0

28 0x1800 - 0x186f

29 0x1880 - 0x189f

30 0x18c0 - 0x18ff

31 0x1c00 - Oxlcff

32 0x2000 - 0x207f

33 0x2400 - 0x24ff

34 0x3000 - O0x8fff

35 extent ‘pcimem’ (0x0 - Oxffffffff), flags=0
36 0x1000 - Ox9ffff

37 0xd2000 - O0xd3fff

38 0xdc000 - O0x3ff78fff

39 0x3£f£80000 - 0x400003ff
40 0xc0000000 - 0xcO0003ff
41 0xc0000800 - 0xc00008ff
42 0xc0000c00 - 0xcO000d4dff
43 0xc0100000 - Oxefffffff
44 0xf£f800000 - Oxffffffff

45 pchbO0 at pciO0 dev O function O "Intel 82855PM Host" rev 0x03
46  intelagpO at pchbO

47 agp0 at intelagp0O: aperture at 0xd0000000, size 0x10000000
48  ppbO at pciO dev 1 function O "Intel 82855PM AGP" rev 0x03
49 pcil at ppbO bus 1

50 | mem address conflict 0xe0000000/0x8000000

51 | extent ‘ppbO0 pciio’ (0x0 - Oxffff), flags=0

52 0x0 - 0x30ff

53 0x4000 - Oxffff

54 | extent ‘ppbO0 pcimem’ (0x0 - Oxffffffff), flags=0
55 0x0 - OxcO10ffff

56 0xc0200000 - Oxffffffff

57 ' vgal at pcil dev O function O "ATI Radeon Mobility M6" rev 0x00
58  wsdisplayO at vgal mux 1: console (80x25, vt100 emulation)

59 | wsdisplayO: screen 1-5 added (80x25, vt100 emulation)

60 radeondrm0 at vgal: irq 11

61 drm0 at radeondrmO

62 uhciO at pciO dev 29 function O "Intel 82801DB USB" rev 0x01: irq 11
63 'uhcil at pciO dev 29 function 1 "Intel 82801DB USB" rev 0x01: irq 11
64 'uhci2 at pciO dev 29 function 2 "Intel 82801DB USB" rev 0x01: irq 11
65 | ehci0 at pciO dev 29 function 7 "Intel 82801DB USB" rev 0x01: irq 11
66 usbO0 at ehciO: USB revision 2.0

67 | uhub0 at usb0 "Intel EHCI root hub" rev 2.00/1.00 addr 1

68 ppbl at pciO dev 30 function O "Intel 82801BAM Hub-to-PCI" rev 0x81
69 pci2 at ppbl bus 2

70 | mem address conflict 0xb0000000/0x1000

71 | mem address conflict 0xb1000000/0x1000
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extent ‘ppbl pciio’ (0x0 - Oxffff), flags=0
0x0 - Ox3fff
0x8000 - 0x803f
0x9000 - Oxffff
extent ‘ppbl pcimem’ (0x0 - Oxffffffff), flags=0
0x0 - 0xc02187ff
0xc0220000 - OxcO23ffff
0xd0000000 - Oxffffffff
cbbO0 at pci2 dev O function O "Ricoh 5C476 CardBus" rev Oxaa: irq 11
cbbl at pci2 dev O function 1 "Ricoh 5C476 CardBus" rev Oxaa: irq 11
"Ricoh 5C552 Firewire" rev 0x02 at pci2 dev O function 2 not configured
em0 at pci2 dev 1 function O "Intel PRO/1000MT (82540EP)" rev 0x03: irq
11, address 00:11:25:b1:32:43
ral0 at pci2 dev 2 function O "Ralink RT2561S" rev 0x00: irq 11, address
00:12:0e:61:5b:74
ralO: MAC/BBP RT2561C, RF RT5225
cardslot0 at cbb0 slot 0 flags O
cardbusO0 at cardslotO: bus 3 device 0O cacheline 0x0, lattimer O0xbO
pcmcia0 at cardslotO
cardslotl at cbbl slot 1 flags O
cardbusl at cardslotl: bus 6 device 0O cacheline 0x0, lattimer O0xbO
pcmcial at cardslotl
ichpcibO at pciO dev 31 function O "Intel 82801DBM LPC" rev 0x01: 24-bit
timer at 3579545Hz
pciideO at pciO dev 31 function 1 "Intel 82801DBM IDE" rev 0x0O1: DMA,
channel O configured to compatibility, channel 1 configured to
compatibility
wd0 at pciideO chanmnel O drive 0: <HTS726060M9ATOO0 >
wdO: 16-sector PIO, LBA, 57231MB, 117210240 sectors
wd0(pciide0:0:0): using PIO mode 4, Ultra-DMA mode 5
pciide0: channel 1 disabled (no drives)
ichiicO at pciO dev 31 function 3 "Intel 82801DB SMBus" rev 0x01: irq 11
iicO at ichiicO
spdmemO at iicO addr 0x50: 512MB DDR SDRAM non-parity PC2700CL2.5
spdmeml at iicO addr Ox51: 512MB DDR SDRAM non-parity PC2700CL2.5
auichO at pciO dev 31 function 5 "Intel 82801DB AC97" rev 0x01: irq 11,
ICH4 AC97
ac97: codec id 0x41445374 (Analog Devices AD1981B)
ac97: codec features headphone, 20 bit DAC, No 3D Stereo
audioO0 at auichO
"Intel 82801DB Modem" rev 0x01 at pciO dev 31 function 6 not configured
usbl at uhciO: USB revision 1.0
uhubl at usbl "Intel UHCI root hub" rev 1.00/1.00 addr 1
usb2 at uhcil: USB revisiom 1.0

uhub2 at usb2 "Intel UHCI root hub" rev 1.00/1.00 addr 1
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usb3 at uhci2: USB revision 1.0

uhub3 at usb3 "Intel UHCI root hub" rev 1.00/1.00 addr 1
isa0 at ichpcibO

isadmaO at isaOl

pckbcO at isa0 port 0x60/5

pckbd0 at pckbcO (kbd slot)

pckbcO: using irq 1 for kbd slot

wskbd0 at pckbdO: console keyboard, using wsdisplayO
pms0O at pckbcO (aux slot)

pckbcO: using irq 12 for aux slot

wsmouseO at pmsO mux O

pcppi0 at isal0 port 0x61

midiO at pcppiO: <PC speaker>

spkr0 at pcppiO

lpt2 at isaO port O0x3bc/4: polled

npx0 at isa0 port 0xf0/16: reported by CPUID; using exception 16
fdcO at isaO port 0x3f0/6 irq 6 drq 2

biomask effd netmask effd ttymask ffff

mtrr: Pentium Pro MTRR support

softraid0 at root

root on wdOa swap on wdOb dump on wdOb

C.2 Boundary Value Analysis Tests

* -

The expected outcomes are encoded within the source of the 3c pro-
grams.

C.2.1 Equality Operator Test
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Input Program

#!/usr/bin/env 3c
# test equality partition
print "subtest 1"
if 99 == 99

print "pass"
else

print "fail"
if_done
# test lower partition
print "subtest 2"
if 98 == 99

print "fail"
else

print "pass"
if_done
# test upper partition
print "subtest 3"
if 100 == 101

print "fail"
else

print "pass"
if_done

TEST PASSED

w N =

9]

Output

subtest 1
pass
subtest 2
pass
subtest 3

pass
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C.2.2 Less Than Operator Test

Input Program

#!/usr/bin/env 3c

# test true outcome
print "subtest 1"
if 1 < 2

print "pass"
else

print "fail"
if_done
# test false outcome
print "subtest 2"
if 2 < 2

print "fail"
else

print "pass"
if_done

TEST PASSED

C.2.3 Greater Than Operator Test

Output

1-pass

2-pass
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Input Program

#!/usr/bin/env 3c
# test true outcome
print "subtest 1"
if -1 > -99

print "pass"
else

print "fail"
if_done
# test false outcome
print "subtest 2"
if -123 > -99

print "fail"
else

print "pass"
if_domne

TEST PASSED

Output

subtest 1
pass
subtest 2

pass

3c-compiler-Edd-Barrett.tex

61

Rev: 272, May 21, 2009



N o=

w

O 0 NN O U1 B

Edward Barrett

3c - A JIT Compiler using LIVM

C.2.4 Less Than or Equal Operator Test

Input Program

#!/usr/bin/env 3c

# test true outcome
print "subtest 1"
if -2221 <= -2221
print "pass"
else
print "fail"

if_done

# test false outcome
print "subtest 2"
if -2220 <= -2221
print "fail"
else
print "pass"

if_done

TEST PASSED

Output

subtest 1
pass
subtest 2

pass

C.2.5 Greater Than or Equal Operator Test

Rev: 272, May 21, 2009
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Input Program

#!/usr/bin/env 3c

# test true outcome
print "subtest 1"
if 36 >= 36

print "pass"
else

print "fail"

if_done

# test false outcome
print "subtest 2"
if 35 >= 36

print "fail"
else
print "pass"
if_domne
TEST PASSED

Output

subtest 1
1-pass
subtest 2

2-pass
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C.2.6 Inequality Operator Test

Input Program Output
#!/usr/bin/env 3c 1  zsh: segmentation fault (core
dumped) 3c test.3c |
# test true outcome on lower side 2 zsh: done
print "subtest 1"
if 100 !'= 101 tee result.txt
print "pass"
else
print "fail"
if_done
# test false outcome
print "subtest 2"
if 101 != 101
print "fail"
else
print "pass"
if_done
# test true outcome on upper side
print "subtest 3"
if 102 != 101
print "pass"
else
print "fail"
if_done
TEST FAILED

C.3 Fibonacci Tests

C.3.1 Program Listings

Listing C.2: Fibonacci Number Generator in 3c

#!/usr/bin/env 3c
# Fibonacci number generator

# $Id: fib2.3c 238 2009-05-14 02:25:35Z edd $

func fib(n)

]
o

let result
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if n <=1

let result = n
else

let n1 = n -1

let n2 = n - 2

let result = call fib(nl) + call fib(n2)
if_done

ret result

func_done

let loop = 0

let out = ""

while

while_

print

print

loop < 25
let out = out + call fib(loop) + " "
let loop = loop + 1

done

"Your Fibonacci numbers:"

out

Listing C.3: Fibonacci Number Generator in Java

import java.io.x*;

class

Fib {

private static int fib(int n) {
if (n <= 1) return n;
else {
return fib(n-1) + fib(n-2);

public static void main(String[] args) {

String out = "";
for(int i = 0; i < 25; i ++) {
int res = fib(i);

out = out + res + " ";

System.out.println("Your Fibonacci numbers:");

System.out.println (out) ;
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return;

Listing C.4: Fibonacci Number Generator in Lua

#!/usr/bin/env lua

-- http://en.literateprograms.org/Fibonacci_numbers_(Lua)

function fib(n) return n<2 and n or fib(m-1)+fib(n-2) end

out = ""

i=20

while i < 25 do
fib (i)
out = out .. fib(i) .. " "
i=1i+1

end

print ("Your Fibonnaci numbers:")

print (out)
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Figure C.1: Optimisation configuration file for optimised £ib(25) runs.
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Average Execution Times of the fib(25) Test Program
Figure C.3: Graphed average execution times of £ib(25)
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C.4 Nesting Test

Listing C.5: C/L stack nest test source code.

#!./3c
# test nesting blocks in 3c
# $Id:

func nest ()
let r = 3

while r > 0

print "loopl"
let j = 4
if j == 2
print
else
print
if 1 ==
else
if_done
if_done

let r =1 -1
print "---"
while_done
print "loopl exit"
ret O

func_done

call nest ()

"fail"

2

print

print
let j
while

while_

print

nest_test.3c 241 2009-05-14 16:46:16Z edd $

"condl pass"

"fail"

"cond2 pass"

=2
j >0
print "loop2"
let j = j -1
done

"loop2 exit"

Listing C.6: C/L stack nest test expected and actual outcome

loop1l
condl pass
cond2 pass
loop2
loop2
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loop2
loop1l
condl
cond2
loop2
loop2
loop2
loopl
condl
cond2
loop2
loop2
loop2

loop1l

exit

pass

pass

exit

pass

pass

exit

exit

TEST PASSED

C.5 Contrived Optimiser Test

; ModulelD

‘mod”’

declare i32 Q@printf (i8x*,

define i32 @test (i32) {

entry:

%1

alloca 132

store 132 0, i32%

%2
%3
%4
%5
%6
w7
%8
%9
%10
%11
%12
%13

load i32%* %1
add i32 %2,
load i32%* %1
add i32 %4,
load i32x% ¥%1
add i32 %6,
load i32%* %1
add i32 %8,
load i32x* Y%
add i32 %10
load i32x* %
add i32 %12

ret i32 %13

1

1

0

0
1

>

1

3

Listing C.7: Un-optimised

1

1

1

<i32>
<i32>
<i32>
<i32>
<i32>
<i32>
<i32>
<i32>
<i32>
<i32>
<i32>
<i32>

<i32*> [#uses=7]

[#uses=1]
[#uses=0]
[#uses=1]
[#uses=0]
[#uses=1]
[#uses=0]
[#uses=1]
[#uses=0]
[#uses=1]
[#uses=0]
[#uses=1]
[#uses=1]
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22}

24  define i32 @main () {

25 entry:

26 %0 = alloca [4 x i8] ; <[4 x i8]1%> [#uses=2]

27 store [4 x i8] c"%d\OA\OO", [4 x i8]x* %O

28 %1 = getelementptr [4 x i8]* %0, i32 0, i32 0 ; <i8x*> [#
uses=0]

29 %2 = alloca [5 x i8] ; <[5 x i81*> [#uses=2]

30 store [5 x i8] c"here\00", [5 x i8]x% %2

31 %3 = getelementptr [5 x i8] %2, i32 0, i32 O ; <i8x*> [#
uses=0]

32 %4 = alloca [4 x i8] ; <[4 x i8]1%> [#uses=2]

33 store [4 x i8] c"%s\OA\OO", [4 x i8]x* %4

34 %5 = getelementptr [4 x i8] %4, i32 0, i32 0 ; <i8x*> [#
uses=0]

35 %6 = alloca i32 ; <i32%> [#uses=4]

36 store i32 0, i32x* %6

37 br label Ycheck

38

39 | check: ; preds = Ybody, Y%entry

40 %7 = load i32* %6 ; <i32> [#uses=1]

41 %8 = icmp eq 132 %7, 1215752191 ; <il1> [#uses=1]

42 br i1 %8, label Y%exit, label Ybody

43

44 | exit: ; preds = Ycheck

45 ret i32 0

46

47 | body: ; preds = Y%check

48 %9 = call i32 @test(i32 1) ; <i32> [#uses=1]

49 %10 = call i32 @test (i32 %9) ; <i32> [#uses=1]

50 %11 = call i32 @test(i32 %10) ; <i32> [#uses=1]

51 %12 = call i32 @test (i32 %11) ; <i32> [#uses=1]

52 %13 = call i32 @test(i32 %12) ; <i32> [#uses=1]

53 %14 = call i32 @test(i32 %13) ; <i32> [#uses=0]

54 %15 = load i32%* %6 ; <i32> [#uses=1]

55 %16 = add i32 %15, 1 ; <i32> [#uses=1]

56 store i32 %16, i32x* %6

57 br label Ycheck

58 |}

Listing C.8: Optimised
1 ; ModuleID = ’mod’
2

3 define i32 @main() {
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4 ; <label>:0

5 br label %1

6

7 | ; <label>:1 ; preds = %5, %0

8 %2 = phi i32 [ %6, %5 1, [ 0, %0 ] ; <i32> [#uses=2]
9 %3 = icmp eq 132 %2, 1215752191 ; <il> [#uses=1]
10 br i1 %3, label %4, label %5

11

12 ; <label>:4 ; preds = %1

13 ret i32 0

14

15 ; <label>:5 ; preds = %1

16 %6 = add i32 %2, 1 ; <i32> [#uses=1]

17 br label %1

18 | }
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